

Integrated C Development System

For Rabbit® 4000 and 5000 Microprocessors

User’s Manual
019-0167_D

The latest revision of this manual is available on the Rabbit Web site,
www.rabbit.com.

http://www.rabbit.com/

Dynamic C User’s Manual

Part Number 019-0167 • Printed in the U.S.A.

Digi International Inc. © 2010 • All rights reserved.

Digi International Inc. reserves the right to make changes and
improvements to its products without providing notice.

Trademarks

Rabbit® and Dynamic C® are registered trademarks of Digi International Inc.

Windows® is a registered trademark of Microsoft Corporation

Table of Contents

 1. Installing Dynamic C ... 8
1.1 Requirements .. 8
1.2 Assumptions ... 8

 2. Introduction to Dynamic C................................ 9
2.1 The Nature of Dynamic C........................... 9

2.1.1 Speed.. 9
2.2 New Features from ANSI C 10
2.3 Dynamic C Enhancements and Differences .

10

 3. Quick Tutorial ... 12
3.1 Run DEMO1.C ... 13

3.1.1 Single Stepping 14
3.1.2 Watch Expression......................... 14
3.1.3 Breakpoint 14
3.1.4 Editing the Program 15

3.2 Run DEMO2.C ... 15
3.2.1 Watching Variables Dynamically . 15

3.3 Run DEMO3.C ... 16
3.3.1 Cooperative Multitasking............. 16

3.4 Summary of Features................................ 17

 4. Language.. 19
4.1 Storage Classes ... 19
4.2 Pointers ... 19
4.3 Far Pointers and Far Data 20

4.3.1 The far Qualifier........................... 20
4.3.2 Basic Declarations........................ 20
4.3.3 Multi-Level Far Pointers 21
4.3.4 Arrays and Structures 21
4.3.5 Complex Declarations.................. 22
4.3.6 Sample Programs 22

4.4 Pointers to Functions, Indirect Calls......... 22
4.5 Function Chaining 24
4.6 Global Initialization 25
4.7 Libraries.. 26

4.7.1 LIB.DIR 27
4.8 Headers ... 28
4.9 Modules .. 28

4.9.1 The Parts of a Module 28
4.9.2 Module Sample Code................... 30
4.9.3 Important Notes............................ 31

4.10 Function Description Headers.................. 32
4.11 Support Files .. 32

 5. Multitasking with Dynamic C 33
5.1 Cooperative Multitasking 33
5.2 A Real-Time Problem............................... 34

5.2.1 Solving the Real-Time Problem
with a State Machine......................... 35

5.3 Costatements .. 35
5.3.1 Solving the Real-Time Problem

with Costatements 36
5.3.2 Costatement Syntax 36
5.3.3 Control Statements....................... 37

5.4 Advanced Costatement Topics 39
5.4.1 The CoData Structure 39
5.4.2 CoData Fields 40
5.4.3 Pointer to CoData Structure......... 41
5.4.4 Functions for Use With Named

Costatements 41
5.4.5 Firsttime Functions 42
5.4.6 Shared Global Variables 42

5.5 Cofunctions .. 42
5.5.1 Cofunction Syntax 43
5.5.2 Calling Restrictions 43
5.5.3 CoData Structure 44
5.5.4 Firsttime Functions 44
5.5.5 Types of Cofunctions................... 45
5.5.6 Types of Cofunction Calls 46
5.5.7 Special Code Blocks 47
5.5.8 Solving the Real-Time Problem

with Cofunctions 48
5.6 Patterns of Cooperative Multitasking....... 48
5.7 Timing Considerations 49

5.7.1 waitfor Accuracy Limits 49
5.8 Overview of Preemptive Multitasking 50
5.9 Slice Statements 50

5.9.1 Slice Syntax 50
5.9.2 Usage ... 51
5.9.3 Restrictions 51
5.9.4 Slice Data Structure 51
5.9.5 Slice Internals 51

5.10 µC/OS-II .. 53
5.10.1 Changes to µC/OS-II 54
5.10.2 Tasking Aware Interrupt Service

Routines (TA-ISR) 56
5.10.3 Library Reentrancy 62
5.10.4 How to Get a µC/OS-II Application

Running... 62
5.10.5 Compatibility with TCP/IP........ 67
5.10.6 Debugging Tips.......................... 68

5.11 Summary.. 68

 6. Debugging with Dynamic C........................... 69
6.1 Debugging Features of Dynamic C.......... 69
Table of Contents rabbit.com 3

http://www.rabbit.com

6.2 Debugging Tools....................................... 71
6.2.1 printf() .. 71
6.2.2 ANSI Escape Sequences 72
6.2.3 Software Breakpoints 73
6.2.4 Hardware Breakpoints.................. 74
6.2.5 Single Stepping 76
6.2.6 Watch Expressions 77
6.2.7 Evaluate Expressions 78
6.2.8 Memory Dump............................. 78
6.2.9 MAP File...................................... 79
6.2.10 Symbolic Stack Trace................. 82
6.2.11 Assert Macro 83
6.2.12 Miscellaneous Debugging Tools 83

6.3 Where to Look for Debugger Features 86
6.3.1 Run and Inspect Menus................ 87
6.3.2 Options Menu............................... 87
6.3.3 Window Menu.............................. 87

6.4 Debug Strategies 88
6.4.1 Good Programming Practices 88
6.4.2 Finding the Bug............................ 90

6.5 Reference to Other Debugging Information .
91

 7. The Virtual Driver .. 92
7.1 Default Operation 92
7.2 Calling _GLOBAL_INIT()....................... 92
7.3 Global Timer Variables 93

7.3.1 Example: Timing Loop 93
7.3.2 Example: Delay Loop 94

7.4 Watchdog Timers 95
7.4.1 Hardware Watchdog..................... 95
7.4.2 Virtual Watchdogs 95

7.5 Preemptive Multitasking Drivers.............. 95

 8. The Slave Port Driver 96
8.1 Slave Port Driver Protocol........................ 96

8.1.1 Overview...................................... 96
8.1.2 Registers on the Slave 97
8.1.3 Polling and Interrupts................... 98
8.1.4 Communication Channels 98

8.2 Functions... 99
8.3 Examples... 103

8.3.1 Status Handler 103
8.3.2 Serial Port Handler..................... 103
8.3.3 Byte Stream Handler 115

 9. Run-Time Errors ... 123
9.1 Run-Time Error Handling....................... 123

9.1.1 Error Code Ranges 123
9.1.2 Fatal Error Codes 124

9.2 User-Defined Error Handler 125
9.2.1 Replacing the Default Handler... 125

9.3 Run-Time Error Logging 126
9.3.1 Error Log Buffer 126
9.3.2 Initialization and Defaults 126
9.3.3 Configuration Macros 127

9.3.4 Error Logging Functions 128
9.3.5 Examples of Error Log Use 128

 10. Memory Management 129
10.1 Memory Map... 129

10.1.1 Memory Mapping Control....... 130
10.2 Extended Memory Functions 130
10.3 Code Placement in Memory 130
10.4 Dynamic Memory Allocation................ 131

 11. Direct Memory Access.................................. 132
11.1 DMA Registers and Global Resources.. 132
11.2 API Functions .. 132
11.3 DMA Interrupts 133
11.4 DMA Transfer Information 133

11.4.1 DMA Transfer Priority 133
11.4.2 DMA Transfer Mode 134
11.4.3 DMA Transfer Functions......... 134
11.4.4 DMA Transfer Function Flags. 134

11.5 DMA with Ethernet 134

 12. FAT File System ... 135
12.1 Overview of FAT Documentation 136
12.2 Running Your First FAT Sample Program...

136
12.2.1 Bringing Up the File System ... 137
12.2.2 Using the File System.............. 140

12.3 More Sample Programs 143
12.3.1 Blocking Sample...................... 143
12.3.2 Non-Blocking Sample 145

12.4 FAT Operations...................................... 149
12.4.1 Format and Partition the Device149
12.4.2 File and Directory Operations . 151

12.5 More FAT Information 161
12.5.1 Clusters and Sectors................. 161
12.5.2 The Master Boot Record.......... 161
12.5.3 FAT Partitions 162
12.5.4 Directory and File Names........ 165
12.5.5 µC/OS-II and FAT Compatibility ..

165
12.5.6 SF1000 and FAT Compatibility165
12.5.7 Hot-Swapping an xD Card 165
12.5.8 Hot-Swapping an SD Card 166
12.5.9 Unsupported FAT Features 166
12.5.10 References 167

 13. Using Assembly Language 168
13.1 Mixing Assembly and C........................ 168

13.1.1 Embedded Assembly Syntax ... 168
13.1.2 Embedded C Syntax 169
13.1.3 Setting Breakpoints in Assembly ..

169
13.1.4 Assembly and 32-bit Pointer

Registers (PW, PX, PY, PZ) 170
13.2 Assembler and Preprocessor.................. 171

13.2.1 Comments 171
Table of Contents rabbit.com 4

http://www.rabbit.com

13.2.2 Defining Constants................... 171
13.2.3 Multiline Macros...................... 173
13.2.4 Labels 173
13.2.5 Special Symbols 174
13.2.6 C Variables 174

13.3 Stand-Alone Assembly Code................. 175
13.3.1 Stand-Alone Assembly Code in

Extended Memory 176
13.3.2 Example of Stand-Alone Assembly

Code... 176
13.3.3 The Stack Frame 177
13.3.4 Embedded Assembly Example 178
13.3.5 The Disassembled Code Window ..

179
13.3.6 Local Variable Access 180

13.4 C Calling Assembly 182
13.4.1 Passing Parameters................... 182
13.4.2 Location of Return Results 183
13.4.3 Returning a Structure 183

13.5 Assembly Calling C 184
13.6 Interrupt Routines in Assembly 184

13.6.1 Steps Followed by an ISR 185
13.6.2 Modifying Interrupt Vectors..... 185

13.7 Common Problems 188

 14. Keywords ... 189
abandon ... 189
abort .. 189
align... 189
always_on.. 190
anymem... 190
asm .. 190
auto.. 191
bbram .. 191
break.. 192
c... 192
case.. 192
char.. 193
cofunc.. 193
const .. 194
continue... 195
costate.. 195
debug... 195
default.. 196
do... 196
else .. 196
enum.. 197
extern... 197
far .. 197
firsttime ... 200
float ... 200
for .. 201
goto.. 201
if .. 201
.init_on .. 202
int .. 202
interrupt ... 202
__lcall__.. 202
long.. 203
main... 203
nodebug... 203

norst .. 204
nouseix.. 204
NULL.. 204
protected ... 205
register .. 205
return... 206
root.. 206
scofunc.. 206
segchain .. 207
shared.. 207
short .. 207
size .. 208
sizeof... 208
speed ... 208
static.. 208
struct ... 209
switch.. 210
typedef .. 210
union ... 211
unsigned.. 211
useix.. 211
waitfor... 212
waitfordone

(wfd) .. 212
while ... 213
xdata.. 213
xmem .. 214
void ... 214
volatile .. 215
xstring ... 215
yield .. 215

14.1 Compiler Directives............................... 216
#asm.. 216
#class .. 216
#debug

#nodebug 217
#define .. 217
#endasm .. 217
#error .. 217
#fatal ... 218
#funcchain .. 218
#GLOBAL_INIT 218
#if

#elif
#else
#endif... 219

#ifdef... 219
#ifndef... 220
#include .. 220
#interleave

#nointerleave 220
#makechain ... 221
#memmap ... 221
#pragma .. 221
#precompile .. 222
#undef ... 222
#use ... 222
#useix

#nouseix....................................... 223
#warns... 223
#warnt ... 223
#ximport.. 224
#zimport.. 224
Table of Contents rabbit.com 5

http://www.rabbit.com

 15. Operators.. 225
15.1 Arithmetic Operators 226

+ .. 226
–... 226
*... 227
/.. 227
++ .. 228
––... 228
% ... 228

15.2 Assignment Operators............................ 229
= .. 229
+= .. 229
-= ... 229
*= .. 229
/= ... 229
%= ... 229
<<=.. 229
>>=.. 229
&= ... 230
^=... 230
|=.. 230

15.3 Bitwise Operators................................... 230
<< .. 230
>> .. 230
&.. 231
^... 231
| .. 231
~... 231

15.4 Relational Operators 232
< .. 232
<= .. 232
> .. 232
>= .. 232

15.5 Equality Operators 233
== .. 233
!= ... 233

15.6 Logical Operators................................... 234
&& .. 234
|| ... 234
! ... 234

15.7 Postfix Expressions................................ 234
() ... 234
[] ... 234
. (dot) ... 235
-> ... 235

15.8 Reference/Dereference Operators.......... 236
&.. 236
*... 236

15.9 Conditional Operators............................ 237
? :... 237

15.10 Other Operators.................................... 238
(type) ... 238
sizeof ... 238
,.. 239

 16. Graphical User Interface 240
16.1 The GUI Environment........................... 240

16.1.1 Editing 240
16.1.2 Menus 241
16.1.3 Using Keyboard Shortcuts....... 241
16.1.4 Editor Window Popup Menu ... 242

16.2 File Menu... 243
16.3 Edit Menu .. 245
16.4 Compile Menu 248
16.5 Run Menu .. 250
16.6 Inspect Menu .. 253
16.7 Options Menu .. 257

16.7.1 Environment Options............... 257
16.7.2 Project Options 274
16.7.3 Toolbars 288

16.8 Window Menu 290
16.9 Help Menu ... 297

 17. Command Line Interface 300
17.1 Default States... 300
17.2 User Input .. 300
17.3 Saving Output to a File.......................... 301
17.4 Command Line Switches....................... 301

17.4.1 Switches Without Parameters .. 301
17.4.2 Switches Requiring a Parameter308

17.5 Examples ... 313
17.6 Command Line RFU 313

 18. Project Files... 316
18.1 Project File Names 316

18.1.3 Active Project 316
18.2 Updating a Project File.......................... 317
18.3 Menu Selections 317
18.4 Command Line Usage 318

 19. Hints and Tips ... 319
19.1 A User-Defined BIOS 319
19.2 Efficiency .. 320

19.2.1 Nodebug Keyword................... 320
19.2.2 In-line I/O 321

19.3 Run-time Storage of Data 321
19.3.1 User Block 321
19.3.2 WriteFlash2.............................. 322
19.3.3 Battery-Backed RAM 322

19.4 Root Memory Reduction Tips 322
19.4.1 Increasing Root Code Space.... 322
19.4.2 Increasing Root Data Space..... 324

Appendix A: Macros and Global Variables 325
Macros Defined by the Compiler.............. 325
Macros Defined in the BIOS or Configuration

Libraries .. 326
Global Variables.. 327
Exception Types.. 328
Rabbit Registers .. 328

Shadow Registers 328
Table of Contents rabbit.com 6

http://www.rabbit.com

Appendix B: Map File Generation 329
Grammar.. 329

Appendix C: Security Software & Utility Programs
330

Dynamic C Utilities................................... 330
Rabbit I/O LIB Utility........................ 330
Library File Encryption...................... 331
File Compression Utility 332
Font and Bitmap Converter Utility 334
Rabbit Field Utility Module............... 334

Software License Agreement 338

Index.. 341
Table of Contents rabbit.com 7

http://www.rabbit.com

Dynamic C User’s Manual rabbit.com 8

 1. INSTALLING DYNAMIC C
Insert the installation disk or CD in the appropriate disk drive on your PC. The installation should begin
automatically. If it doesn’t, issue the Windows “Run...” command and type the following command:

‹disk›:\SETUP

The installation program will begin and guide you through the installation process.

1.1 Requirements
Dynamic C requires an IBM-compatible PC running Windows 2000 or later with at least one free COM or
USB port.

Please note that Windows Vista is supported by Dynamic C out of the box if there is only one processor in
the host PC or laptop. With multiple processors (a.k.a., dual cores) present in the host system, you must
check Windows “Processor Affinity” setting in order to ensure Vista compatibility with Dynamic C. Tech-
nical note TN257 “Running Dynamic C with Windows Vista” has instructions for modifying the “Proces-
sor Affinity” setting. This technical note is available on the Rabbit website:

www.rabbit.com/support/techNotes_whitePapers.shtml#dcp

Starting with Dynamic C 10.21, the “Processor Affinity” setting is set automatically.

1.2 Assumptions
It is assumed that the reader has a working knowledge of:

• The basics of operating a software program and editing files under Windows on a PC.

• Programming in a high-level language.

• Assembly language and architecture for controllers.

Refer to one or both of the following texts for a full treatment of C:

• The C Programming Language by Kernighan and Ritchie (published by Prentice-Hall).

• C: A Reference Manual by Harbison and Steel (published by Prentice-Hall).

http://www.rabbit.com
http://www.rabbit.com/support/techNotes_whitePapers.shtml#dcp

 2. INTRODUCTION TO DYNAMIC C
Dynamic C is an integrated development system for writing embedded software. It is designed for use with
Rabbit controllers and other controllers based on the Rabbit microprocessor.

2.1 The Nature of Dynamic C
Dynamic C integrates the following development functions:

• Editing

• Compiling

• Linking

• Loading

• Debugging

into one program. Dynamic C has an easy-to-use, built-in, full-featured text editor. Dynamic C programs
can be executed and debugged interactively at the source-code or machine-code level. Pull-down menus
and keyboard shortcuts for most commands make Dynamic C easy to use.

Dynamic C also supports assembly language programming. It is not necessary to leave C or the develop-
ment system to write assembly language code. C and assembly language may be mixed together.

Debugging under Dynamic C includes the ability to use printf commands, watch expressions, break-
points and stack tracing. Watch expressions can be used to compute C expressions involving the target’s
program variables or functions. Watch expressions can be evaluated while stopped at a breakpoint or while
the target is running its program. Stack tracing shows function call sequences and parameter values.

Dynamic C provides extensions to the C language (such as shared and protected variables, costatements
and cofunctions) that support real-world embedded system development. Dynamic C supports cooperative
and preemptive multitasking.

Dynamic C comes with many function libraries, all in source code. These libraries support real-time pro-
gramming, machine level I/O, and provide standard string and math functions.

2.1.1 Speed
Dynamic C compiles directly to memory. Functions and libraries are compiled and linked and downloaded
on-the-fly. On a fast PC, Dynamic C might load 30,000 bytes of code in five seconds at a baud rate of
115,200 bps.
Dynamic C User’s Manual rabbit.com 9

http://www.rabbit.com

2.2 New Features from ANSI C
New features from ANSI/ISO C90 are gradually being added to Dynamic C.

The following features were introduced in Dynamic C 10.60:

• Variable initializer support: Variables can now be initialized within a declaration.

• Preprocessor support for the "defined" keyword: The "defined" keyword can now be used in #if /
#elif expressions to determine whether a macro has been previously defined.

• #include support: The standard C mechanism of using "#include" to include other source files is now
supported.

The following feature was introduced with Dynamic C 10.62:

• Function pointer parameter list checking: Function pointers may now contain a parameter list, and
the compiler will check the parameters and perform automatic type promotion when a function is called
through the function pointer.

2.3 Dynamic C Enhancements and Differences
Dynamic C offers a number of extensions to the standard C language. These extensions are targeted for
making your embedded development easier.

2.3.1 Dynamic C Enhancements
Many enhancements have been added to Dynamic C. Some of these are listed below.

• Dynamic C 10.54 introduces remote firmware updates for some board types. Please see AN421
“Remote Program Update” for more information. This document is available on the Dynamic C soft-
ware CD and on the Rabbit Support web site.

• Function Chaining, a concept unique to Dynamic C, allows special segments of code to be embedded
within one or more functions. When a named function chain executes, all the segments belonging to
that chain execute. Function chains allow software to perform initialization, data recovery, or other
kinds of tasks on request. Dynamic C also provides a special function chain called _GLOBAL_INIT
which can be used for initialization code. The _GLOBAL_INIT function chain is executed at the start
of the program. Dynamic C also provides a special function chain called _GLOBAL_INIT which can
be used for initialization code. The _GLOBAL_INIT function chain is executed at the start of the pro-
gram.

• Costatements allow cooperative, parallel processes to be simulated in a single program.

• Cofunctions allow cooperative processes to be simulated in a single program.

• Slice Statements allow preemptive processes in a single program.

• Dynamic C supports embedded assembly code and stand-alone assembly code.

• Dynamic C has keywords that help protect data shared between different contexts (shared) or stored in
battery-backed memory (protected).

• Dynamic C has a set of features that allow the programmer to make the fullest use of xmem (extended
memory). Up until the release of Dynamic C 10.21, the compiler supported a 1 MB physical address
space. Starting with Dynamic C 10.21, the compiler supports up to the 16 MB of physical memory; up
 Introduction to Dynamic C rabbit.com 10

http://www.rabbit.com
http://www.rabbit.com/documentation/docs/refs/AN418/AN421.pdf

to 16 MB can be used for data and up to 1 MB can be used for code. (Dynamic C has been verified to
work with Rabbit-based boards with up to 4.5 MB of memory.)

Normally, Dynamic C takes care of memory management, but there are instances where the
programmer will want to take control of it. Dynamic C has keywords and directives to help put
code and data in the proper place, such as: root, xmem, and #memmap for code and far for data.

See Chapter 10 for further details on memory management.
• The #use statement allows you to create library files that include your function declarations and defini-

tions together. Starting with Dynamic C 10.60, you can use the standard #include mechanism instead.

2.3.2 Dynamic C Differences
The main differences in Dynamic C are summarized in the list below and discussed in detail in Chapter 4.
“Language” and Chapter 14. “Keywords.”

• When declaring pointers to functions, arguments should not be used in the declaration. Arguments may
be used when calling functions indirectly via pointer, but the compiler will not check the argument list
in the call for correctness. See Section 4.4 for more information

• Bit fields are not supported.

• Separate compilation of different parts of the program is not supported.
 Introduction to Dynamic C rabbit.com 11

http://www.rabbit.com

 3. QUICK TUTORIAL

Sample programs are provided in the Dynamic C Samples folder, which is in the root directory where
Dynamic C was installed. The Samples folder contains many subfolders, as shown in Figure 3.1. Sample
programs are provided in source code format. You can open the source code file in Dynamic C and read
the comment block at the top of the sample program for a description of its purpose and other details.
Comments are also provided throughout the source code. This documentation, provided by the software
engineers, is a rich source of information.

Figure 3.1 Screenshot of Samples Folder

The subfolders contain sample programs that illustrate the use of the various Dynamic C libraries. For
example, the subfolders “Cofunc” and “Costate” have sample programs illustrating the use of
COFUNC.LIB and COSTATE.LIB, libraries that support cooperative multitasking using Dynamic C lan-
guage extensions. Besides its subfolders, the Samples folder also contains some sample programs to dem-
onstrate various aspects of Dynamic C. For example, the sample program Pong.c demonstrates output
to the Stdio window.

In the rest of this chapter we examine three sample programs in some detail.
Dynamic C User’s Manual rabbit.com 12

http://www.rabbit.com

3.1 Run DEMO1.C
This sample program will be used to illustrate some of the functions of Dynamic C. Open the file
Samples/DEMO1.C using the File menu or the keyboard shortcut <Ctrl+O>. The program will appear
in a window, as shown in Figure 3.2 (minus some comments). Use the mouse to place the cursor on the
function name printf in the program and press <Ctrl+H>. This brings up a Function Description window
for printf(). You can do this with all functions in the Dynamic C libraries, including libraries you
write yourself.

Figure 3.2 Sample Program DEMO1.C

To run DEMO1.C compile it using the Compile menu, and then run it by selecting “Run” in the
Run menu. (The keyboard shortcut <F9> will compile and run the program. You may also use the
green triangle toolbar button as a substitute for <F9>.)

The value of the counter should be printed repeatedly to the Stdio window if everything went well. If this
doesn’t work, review the following points:

• The target should be ready, indicated by the message “BIOS successfully compiled...” If you did not
receive this message or you get a communication error, recompile the BIOS by pressing <Ctrl+Y> or
select “Reset Target / Compile BIOS” from the Compile menu.

• A message reports “No Rabbit Processor Detected” in cases where the wall transformer is not con-
nected or not plugged in.

• The programming cable must be connected to the controller. (The colored wire on the programming
cable is closest to pin 1 on the programming header on the controller). The other end of the program-
 Quick Tutorial rabbit.com 13

http://www.rabbit.com

ming cable must be connected to the PC serial port. The COM port specified in the Communications
dialog box must be the same as the one the programming cable is connected to. (The Communications
dialog box is accessed via the Communications tab of the Options | Project Options menu.)

• To check if you have the correct serial port, press <Ctrl+Y>. If the “BIOS successfully compiled …”
message does not display, choose a different serial port in the Communications dialog box until you
find the serial port you are plugged into. Don’t change anything in this menu except the COM number.
The baud rate should be 115,200 bps and the stop bits should be 1.

3.1.1 Single Stepping

To experiment with single stepping, we will first compile DEMO1.C to the target without running
it. This can be done by clicking the compile button on the task bar. This is the same as pressing F5.
Both of this actions will compile according to the setting of “Default Compile Mode.” (See
“Default Compile Mode” in Chapter 16, for how to set this parameter.) Alternatively you may
select Compile | Compile to Target from the main menu.

After the program compiles a highlighted character (green) will appear at the first executable
statement of the program. Press the <F8> key to single step (or use the toolbar button). Each time
the <F8> key is pressed, the cursor will advance one statement. When you get to the statement:
for(j=0, j< ... , it becomes impractical to single step further because you would have to
press <F8> thousands of times. We will use this statement to illustrate watch expressions.

3.1.2 Watch Expression

 Watch expressions may only be added, deleted or updated in run mode. To add a watch expression
click on the toolbar button pictured here, or press <Ctrl+W> or choose “Add Watch” from the
Inspect menu. The Add Watch Expression popup box will appear. Type the lower case letter “j”
and click on either “Add” or “OK.” The former keeps the popup box open, the latter closes it.
Either way the Watches window appears. This is where information on watch expressions will be
displayed. Now continue single stepping. Each time you do, the watch expression (j) will be eval-
uated and printed in the Watches window. Note how the value of “j” advances when the statement
j++ is executed.

3.1.3 Breakpoint
Move the cursor to the start of the statement:

for (j=0; j<20000; j++);

To set a breakpoint on this statement, press <F2> or select “Toggle Breakpoint” from the Run menu. A red
highlight appears on the first character of the statement. To get the program running at full speed, press
<F9>. The program will advance until it hits the breakpoint. The breakpoint will start flashing both red and
green colors.

To remove the breakpoint, press <F2> or select “Toggle Breakpoint” on the Run menu. To continue pro-
gram execution, press <F9>. You will see the value of “i” displayed in the Stdio window repeatedly until
program execution is halted.
 Quick Tutorial rabbit.com 14

http://www.rabbit.com

You can set breakpoints while the program is running by positioning the cursor to a statement and using
the <F2> key. If the execution thread hits the breakpoint, a breakpoint will take place. You can toggle the
breakpoint with the <F2> key and continue execution with the <F9> key.

You can also set breakpoints while in edit mode. Breakpoint information is not only retained when going
back and forth from edit mode to debug mode, it is stored when a file is closed and restored when the file
is re-opened.

3.1.4 Editing the Program
Press <F4>to put Dynamic C into edit mode. Use the “Save as” choice on the File menu to save the file
with a new name so as not to change the original demo program. Save the file as MYTEST.C. Now change
the number 20000 in the for statement to 10000. Then use the <F9> key to recompile and run the pro-
gram. The counter displays twice as quickly as before because you reduced the value in the delay loop.

3.2 Run DEMO2.C
Go back to edit mode and open the program DEMO2.C. This program is the same as the first program,
except that a variable k has been added along with a statement to increment “k” by the value of “i” each
time around the endless loop. Compile and run DEMO2.C.

3.2.1 Watching Variables Dynamically
Press <Ctrl+W> to open the “Add Watch Expression” popup box.

Type “k” in the text entry box, then click “OK” (or “Add”) to add the expression “k” to the top of the list
of watch expressions. Now press <Ctrl+U>, the keyboard shortcut for updating the watch window. Each
time you press <Ctrl+U>, you will see the current value of k.

Add another expression to the watch window:

k*5

Then press <Ctrl+U> several times to observe the watch expressions “k” and “k*5.”
 Quick Tutorial rabbit.com 15

http://www.rabbit.com

3.3 Run DEMO3.C
The example below, sample program DEMO3.C, uses costatements. A costatement is a way to perform a
sequence of operations that involve pauses or waits for some external event to take place.

3.3.1 Cooperative Multitasking
Cooperative multitasking is a way to perform several different tasks at virtually the same time. An exam-
ple would be to step a machine through a sequence of tasks and at the same time carry on a dialog with the
operator via a keyboard interface. Each separate task voluntarily surrenders its compute time when it does
not need to perform any more immediate activity. In preemptive multitasking control is forcibly removed
from the task via an interrupt.

Dynamic C has language extensions to support both types of multitasking. For cooperative multitasking
the language extensions are costatements and cofunctions. Preemptive multitasking is accomplished with
slicing or by using the µC/OS-II real-time kernel. The µC/OS-II real-time kernel is included with
Dynamic C starting with Dynamic C version 10.21. The other multitasking software has always shipped
with all versions of Dynamic C.

 3.3.1.1 Advantages of Cooperative Multitasking

Unlike preemptive multitasking, in cooperative multitasking variables can be shared between different
tasks without taking elaborate precautions. Cooperative multitasking also takes advantage of the natural
delays that occur in most tasks to more efficiently use the available processor time.

The DEMO3.C sample program has two independent tasks. The first task prints out a message to Stdio
once per second. The second task watches to see if the keyboard has been pressed and prints the entered
key.

main() {
int secs; // seconds counter
secs = 0; // initialize counter

(1) while (1) { // endless loop

// First task will print the seconds elapsed.

(2) costate {
secs++; // increment counter

(3) waitfor(DelayMs(1000)); // wait one second
printf("%d seconds\n", secs); // print elapsed seconds

(4) }

// Second task will check if any keys have been pressed.

costate {
(5) if (!kbhit()) abort; // key been pressed?

printf(" key pressed = %c\n", getchar());
}

(6) } // end of while loop
} // end of main
 Quick Tutorial rabbit.com 16

http://www.rabbit.com

The numbers in the left margin are reference indicators and not part of the code. Load and run the pro-
gram. The elapsed time is printed to the Stdio window once per second. Push several keys and note how
they are reported.

The elapsed time message is printed by the costatement starting at the line marked (2). Costatements need
to be executed regularly, often at least every 25 ms. To accomplish this, the costatements are enclosed in a
while loop. The while loop starts at (1) and ends at (6). The statement at (3) waits for a time delay, in
this case 1000 ms (one second). The costatement executes each pass through the while loop. When a
waitfor condition is encountered the first time, the current value of MS_TIMER is saved and then on
each subsequent pass the saved value is compared to the current value. If a waitfor condition is not
encountered, then a jump is made to the end of the costatement (4), and on the next pass of the loop, when
the execution thread reaches the beginning of the costatement, execution passes directly to the waitfor
statement. Once 1000 ms has passed, the statement after the waitfor is executed. A costatement can
wait for a long period of time, but not use a lot of execution time. Each costatement is a little program with
its own statement pointer that advances in response to conditions. On each pass through the while loop
as few as one statement in the costatement executes, starting at the current position of the costatement’s
statement pointer. Consult Chapter 5 for more details.

The second costatement in the program checks to see if an alpha-numeric key has been pressed and, if one
has, prints out that key. The abort statement is illustrated at (5). If the abort statement is executed, the
internal statement pointer is set back to the first statement in the costatement, and a jump is made to the
closing brace of the costatement.

Observe the value of secs while the program is running.To illustrate the use of snooping, use the watch
window to observe secs while the program is running. Add the variable secs to the list of watch expres-
sions, then press <Ctrl+U> repeatedly to observe as secs increases.

3.4 Summary of Features
This chapter provided a quick look at the interface of Dynamic C and some of the powerful options avail-
able for embedded systems programming. The following several paragraphs are a summary of what we’ve
discussed.

Development Functions

When you load a program it appears in an editor window. You compile by clicking Compile on the task bar
or from the Compile menu. The program is compiled into machine language and downloaded to the target
over the serial port. The execution proceeds to the first statement of main, where it pauses, waiting to run.
Press <F9> or select “Run” on the Run menu. If want to compile and run the program with one keystroke,
use <F9>, the run command; if the program is not already compiled, the run command compiles it.

Single Stepping

This is done with the F8 key. The F7 key can also be used for single stepping. If the F7 key is used, then
descent into functions will take place. With F8 the function is executed at full speed when the statement
that calls it is stepped over.
 Quick Tutorial rabbit.com 17

http://www.rabbit.com

Setting Breakpoints

The F2 key is used to toggle a breakpoint at the cursor position. Breakpoints can be toggled while in run
mode, either while stopped at a breakpoint or when the program is running at full speed. Breakpoints can
also be set in edit mode and retained when changing modes or closing the file.

Watch Expressions

A watch expression is a C expression that is evaluated on command in the Watches window. An expression
is basically any type of C statement that can include operators, variables, structures and function calls, but
not statements that require multiple lines such as for or switch. You can have a list of watch expres-
sions in the Watches window. If you are single stepping, then they are all evaluated on each step. You can
also command the watch expressions to be evaluated by using the <Ctrl+U> command. When a watch
expression is evaluated at a breakpoint, it is evaluated as if the statement was at the beginning of the func-
tion where you are single stepping.

Costatements

A costatement is a Dynamic C extension that allows cooperative multitasking to be programmed by the
user. Keywords, like abort and waitfor, are available to control multitasking operation from within
costatements.
 Quick Tutorial rabbit.com 18

http://www.rabbit.com

 4. LANGUAGE

Dynamic C is based on the C language. The programmer is expected to know programming methodologies
and the basic principles of the C language. Dynamic C has its own set of libraries, which include user-call-
able functions. Please see the Dynamic C Function Reference Manual for detailed descriptions of these
API functions. Dynamic C libraries are in source code, allowing the creation of customized libraries.

Before starting on your application, read through the rest of this chapter to understand the differences
between standard C and Dynamic C.

For more information on the C language, see a reference book such as The C Programming Language by
Kernighan and Ritchie (published by Prentice-Hall).

4.1 Storage Classes
Variable storage can be auto or static. The term “static” means the data occupies a permanent fixed
location for the life of the program. The term “auto” refers to variables that are placed on the system stack
for the life of a function call. The default storage class is auto, but can be changed by using
#class static; however, using this compiler directive with “static” is deprecated starting with
Dynamic C 10.44.

The default storage class can be superseded by the use of the keyword auto or static in a variable dec-
laration. These keywords apply to local variables, that is, variables defined within a function. If a variable
does not belong to a function, it is called a global variable—available anywhere in the program—but there
is no keyword in C to represent this fact. Global variables always have static storage.

The register type is reserved, but is not currently implemented. Dynamic C will change a variable to
be of type auto if register is encountered. Even though the register keyword is not implemented,
it still can not be used as a variable name or other symbol name. Its use will cause unhelpful error mes-
sages from the compiler.

4.2 Pointers
Pointer checking is a run-time option in Dynamic C. Use the Compiler tab on the Options | Project Options
menu. Pointer checking will catch attempts to dereference a pointer to unallocated memory. However, if an
uninitialized pointer happens to contain the address of a memory location that the compiler has already
allocated, pointer checking will not catch this logic error. Because pointer checking is a run-time option,
pointer checking adds instructions to code when pointer checking is used.

Pointer checking is not currently supported for far pointers.
Dynamic C User’s Manual rabbit.com 19

http://www.rabbit.com

4.3 Far Pointers and Far Data
This section examines the syntax of the far keyword, using examples from simple variables to complex
aggregate types.

4.3.1 The far Qualifier
The far keyword allows a programmer to directly declare variables in xmem. Previous to this develop-
ment, usage of xmem was limited to library routines such as root2xmem() and xmem2root() using
memory allocated using xalloc. Now, the compiler will directly generate code to access xmem allocated
through standard variable declarations with the addition of the far keyword.

4.3.2 Basic Declarations
In almost all respects, far behaves syntactically identically to the const qualifier.

The keyword far was added to use the same basic principles as const, with a few exceptions. The rea-
son for this is that far and const both indicate the storage type for variables. In the case of const, the
storage is in the flash device. Variables declared as far are stored in xmem in RAM (and can therefore be
modified). A variable can also be declared as const far, which places the constant variable in the
xmem space on the flash device.

far type var; // Declares a variable “var” having far storage

We also allow

type far var;

which has the same meaning as the previous declaration. In other words, the far keyword may appear
before or after the base type.

We do not allow

far type far var;

In this context, these are base type qualifiers. The far keyword can also qualify pointer types, such as in
the following example:

type * far ptr;

This declares a variable, ptr, having far storage pointing to an object of type type. Pointer qualifiers are
always found on the right-hand side of the ‘*’ token.

Here is a slightly more complex declaration:

far type * far ptr;

Here, the object type to which ptr points is qualified as having far storage.
 Language rabbit.com 20

http://www.rabbit.com

4.3.3 Multi-Level Far Pointers
The semantics of the far qualifier can become quite complex if used with multi-level pointers. Some con-
fusion arises when thinking about how to qualify different pointer levels in a more complex declaration
such as the following basic pointer-to-pointer declaration:

type * * ptr;

This declares ptr as a variable which points to an object of type pointer to type, or simply, ptr is a
pointer to pointer-to-type. What if we wanted to declare ptr to be a pointer to a pointer having far stor-
age (the pointer to type is in xmem, but what it points to is in root)? This would have the following decla-
ration:

type * far * ptr;

Here we see that pointer declarations are right-associative. Recalling that the far qualifier associates with
the ‘*’ token to its left, we see that the nested pointer type is the left ‘*’ not the right one, illustrated using
brackets:

[type * far] * ptr;

In the above example, the association of the ‘*’ and far is evident – the variable ptr is a pointer-in-root,
and it points to a pointer-in-far.

For another example, a complex and infrequent declaration might be:

far type * far * * far ptr;

A succinct way of stating the type of ptr in this example would be: ptr is a pointer-in-far to a pointer-in-
root to a pointer-in-far to a variable of type having far storage.

4.3.4 Arrays and Structures
The far qualifier can also be applied to arrays and structures, with the effect of the compiler allocating
storage for those variables from xmem. The declarations for both structures and arrays (and pointers to
those types) follow the same rules as basic type variable declarations. An example structure declaration
might be:

struct S {
int a;
char b[20];

};

far struct S str; // A structure of type S in xmem

Note that the far qualifier is applied only to the actual declaration of a variable with the structure type,
not the structure definition itself. The far qualifier may not be applied to either a structure type definition
or any member of a structure. If a structure instance variable is placed in xmem using the far keyword,
then all members of that instance are in xmem – you can not mix xmem and root within a single structure.

Arrays can also be placed in xmem using far. The following is a possible declaration of an array in
xmem:

far type array[5000]; // An array of 5000 elements of type type in xmem
 Language rabbit.com 21

http://www.rabbit.com

Note that the size limit imposed on arrays in root memory (32,767 bytes) also apply to far arrays. You can
declare an array as large as your largest contiguous free block of xmem available up to this limit. See
Chapter 10 “Memory Management” for more information on how xmem is allocated and used by the com-
piler.

4.3.5 Complex Declarations
All of the elements discussed so far can be applied in a single declaration to produce very complex types
for variables. As an example, such a declaration may look like the following:

const type (* far const ptr)[c0][c1] = &const_array;

In this example, ptr is a constant pointer-in-far (xmem constant) to a 2-dimensional array of c0 x c1 ele-
ments of type constant type. In other words, we have a pointer in xmem to a two-dimensional array of con-
stant elements. The array the pointer is pointing to is in root memory, since the far qualifier only
associates with the pointer variable itself. The pointer is constant, so it must be initialized, and the first
const implies that we can not change the elements in the array since they represent constants (which are
in flash and can not be modified). We assume that c0, c1, and const_array are all constant variables
or literals defined previously.

4.3.6 Sample Programs
From the Dynamic C installation directory, look in /Samples/Rabbit4000/FAR/ for sample pro-
grams demonstrating the use of the far keyword. The sample far_demo.c shows how to declare a
local variable that will be stored in far memory (which means it must be declared static) and accessed
just like any other local variable. The sample LinkedList.c demonstrates far pointers and includes a
library, LinkedList.LIB, that creates and maintains a linked list in the far memory space.

4.4 Pointers to Functions, Indirect Calls
Pointers to functions may be declared. When a function is called using a pointer to it, instead of directly,
we call this an indirect call. The syntax for declaring a pointer to a function is different than for ordinary
pointers. Standard syntax for a pointer to a function is:

for example:

You can pass arguments to functions that are called indirectly by pointers, and the compiler will check
them for correctness if an argument list is provided in the function pointer declaration. This means that the
auto promotions provided by Dynamic C type checking will automatically be applied. For example, if a
function takes a long as a parameter, and you pass it a 16-bit integer value, it will be automatically cast to
type long in order for 4 bytes to be put onto the stack, as would happen with a normal function call.

returntype (*name)([argument list]);

int (*func1)(int a, int b);
void (*func2)(char*);
 Language rabbit.com 22

http://www.rabbit.com

Prior to version 10.62, Dynamic C did not recognize the argument list in function pointer declarations and
would generate an error. The syntax for the above examples would have looked like the following:

Note that in ANSI C and Dynamic C 10.62 (and later) these statements use valid syntax that indicates that
any parameters passed to the function pointers will not be type-checked, essentially providing a wild-card
for the parameter list. Using this syntax is dangerous since it can lead to stack imbalances (passing a 16-bit
integer to a function taking a 32-bit long, for example) and it should be used with great care.

It is advisable that function pointers in older Dynamic C programs be updated to use parameter lists to
catch potential errors, but those programs will continue to compile without changes in Dynamic C 10.62
and later.

The following program shows some examples of using function pointers:

int (*func1)();
void (*func2)();

int intfunc(int x, int y);
typedef int (*fnptr)(int, int);// create pointer to function that returns an integer

main(){
int x,y;
int (*fnc1)(int, int); // declare var fnc1 as a pointer to an int function
fnptr fp2; // declare var fp2 as pointer to an int function
fnc1 = intfunc; // initialize fnc1 to point to intfunc()
fp2 = intfunc; // initialize fp2 to point to the same function
x = (*fnc1)(1,2); // call intfunc() via fnc1
y = (*fp2)(3,4); // call intfunc() via fp2
printf("%d\n", x);
printf("%d\n", y);

}

int intfunc(int x, int y){
return x+y;

}

 Language rabbit.com 23

http://www.rabbit.com

4.5 Function Chaining
Function chaining allows special segments of code to be distributed in one or more functions. When a
named function chain executes, all the segments belonging to that chain execute. Function chains allow the
software to perform initialization, data recovery, and other kinds of tasks on request. There are two direc-
tives, #makechain and #funcchain, and one keyword, segchain that create and control function
chains:

#makechain chain_name
Creates a function chain. When a program executes the named function chain, all of the functions or
chain segments belonging to that chain execute. (No particular order of execution can be guaranteed.)

#funcchain chain_name name
Adds a function, or another function chain, to a function chain.

segchain chain_name { statements }
Defines a program segment (enclosed in curly braces) and attaches it to the named function chain.

Function chain segments defined with segchain must appear in a function directly after data declara-
tions and before executable statements, as shown below.

A program will call a function chain as it would an ordinary void function that has no parameters. The fol-
lowing example shows how to call a function chain that is named recover.

my_function(){
/* data declarations */
segchain chain_x{
 /* some statements which execute under chain_x */
}
segchain chain_y{
/* some statements which execute under chain_y */
}
/* function body which executes when my_function is called */
}

#makechain recover
...
recover();
 Language rabbit.com 24

http://www.rabbit.com

4.6 Global Initialization
Various hardware devices in a system need to be initialized, not only by setting variables and control regis-
ters, but often by complex initialization procedures. Dynamic C provides a specific function chain,
_GLOBAL_INIT, for this purpose. Your program can add segments to the _GLOBAL_INIT function
chain, as shown in the example below.

The special directive #GLOBAL_INIT{ } tells the compiler to add the code in the block enclosed in

braces to the _GLOBAL_INIT function chain. Any number of #GLOBAL_INIT sections may be used in
your code. The order in which they are called is indeterminate since it depends on the order in which they
were compiled. The storage class for variables used in a global initialization section must be static. Since
the default storage class is auto, you must define variables as static in your application.

The _GLOBAL_INIT function chain is always called when your program starts up, so there is nothing
special to do to invoke it. In addition, it may be called explicitly at any time in an application program with
the statement:

_GLOBAL_INIT();

Make this call this with caution. All costatements and cofunctions will be initialized. See Section 7.2 for
more information about calling _GLOBAL_INIT().

long my_func(char j);

main(){
my_func(100);
}

long my_func(char j){
static int i;
static long array[256];

// The GLOBAL_INIT section is automatically run once when the program starts up

#GLOBAL_INIT{
for(i = 0; i < 100; i++){
array[i] = i*i;
}
}

return array[j]; // only this code runs when the function is called
}

 Language rabbit.com 25

http://www.rabbit.com

4.7 Libraries
Dynamic C includes many libraries—files of useful functions in source code form. They are located in the
\LIB directory where Dynamic C was installed. To support larger memories, some changes to the Dynamic
C environment were made in version 10.21. One such change is that the \LIB directory now contains two
separate directories, Rabbit2000_3000 and Rabbit4000. Each directory contains the same structure previ-
ously used by \LIB, but the libraries have been updated for the Rabbit 4000 processor in the
\Lib\Rabbit4000 directory.

The default library file extension is “LIB”. Dynamic C uses functions and data from library files and com-
piles them with an application program that is then downloaded to a controller or saved to a .bin file.

An application program (the default file extension is .c) consists of a source code file that contains a main
function (called main) and usually other user-defined functions. Any additional source files are consid-
ered to be libraries (though they may have a .c extension) and are treated as such. The minimum applica-
tion program is one source file, containing only:

main(){}

Libraries (those defined by you and those defined by Rabbit) are “linked” with the application through the
#use directive. The #use directive identifies a file from which functions and data may be extracted.
Files identified by #use directives are nestable, as shown below.

Note that as of Dynamic C 10.60, the standard #include C construct can be used. In particular, this allows
the organization of code into .c (code) and .h (header) files.

Figure 4.1 Nesting Files in Dynamic C

Most libraries needed by Dynamic C programs have #use statements in lib\..\default.h.

Section 4.9 explains how Dynamic C knows which functions and global variables in a library are available
for use.

Note that as of Dynamic C 10.60, the standard #include C construct can be used. In particular, this allows
the organization of code into .c (code) and .h (header) files.
 Language rabbit.com 26

http://www.rabbit.com

4.7.1 LIB.DIR
Any library that is to be #use’d in a Dynamic C program must be listed in the file LIB.DIR, or another
*.DIR file specified by the user. LIB.DIR is in the root directory of the Dynamic C installation.

The lib.dir strategy allows naming a folder with optional mask(s). Having no mask implies “*.*” and mul-
tiple masks are separated by “;” so that “lib” and “lib*.*” both include all files and
“lib*.lib;*.c;*.h*” includes all files with extensions of .lib, .c and .h. Dynamic C gener-
ated files (e.g., .mdl, .hxl, etc.) are not parsed, which means they are excluded when using the wildcard
mask.

Dynamic C enforces unique file extension names regardless of path, so that “#use myfile.lib” can not use
an unintended copy of myfile.lib as the list of pathnames included in lib.dir is searched for the
first occurrence of that file extension. An error message naming both full paths will come up when trying
to compile ANY program alerting the user of the infraction.

A new feature introduced in Dynamic C10.21 is the ability to define masks that use exclusion criteria that
will exclude specified folders and files from the “lib.dir” file. Such a lib.dir entry is just like a normal one
except the it starts with “>”, a character that Windows does not allow in a folder name. Once exclusions
are defined, they persist throughout all entries that follow. To make this clear, look at the following exam-
ples of “lib.dir entries:

Example 1:
The following “lib.dir” entries:

>CVS
Lib\Rabbit4000
Samples*.Lib

excludes CVS folder trees throughout following entries, includes all files in Lib\Rabbit4000 and its
subfolders (except for CVS subfolders), and includes all “.lib” files in Samples and its subfolders (except
for CVS subfolders).

Thus, the ordering of the LIB.DIR entries is meaningful, as shown in the next example.

Example 2:
As dictated by the following three entries, the file Lib\Rabbit4000\BiosLib\Stdbios.c is
excluded from LIB.DIR.

>*.c
Samples
Lib\Rabbit4000

Reordering the entries as shown below results in the file Lib\Rabbit4000\BiosLib\Stdbios.c
being included in LIB.DIR.

Lib\Rabbit4000
>*.c
Samples

Example 3:
Dynamic C will not correctly process lines that include spaces:

\Lib\ MyLibs *.Lib // WRONG, because of spaces in path
\Lib\MyLibs*.Lib // CORRECT, spaces removed
 Language rabbit.com 27

http://www.rabbit.com

4.8 Headers
The following table describes two kinds of headers used in Dynamic C libraries.

You may also notice some “Library Description” headers at the top of library files. These have no special
meaning to Dynamic C, they are simply comment blocks.

4.9 Modules
A Dynamic C library typically contains several modules. Modules must be understood to write efficient
custom libraries. Modules provide Dynamic C with the names of functions and variables within a library
that may be referenced by files that have a #use directive for the library somewhere in the code.

Modules organize the library contents in such a way as to allow for smaller code size in the compiled
application that uses the library. To create your own libraries, write modules following the guidelines in
this section.

The scope of modules is global, but indeterminate compilation order makes the situation less than straight-
forward. Read this entire section carefully to understand module scope.

4.9.1 The Parts of a Module
A module has three parts: the key, the header, and the body. The structure of a module is:

A module begins with its BeginHeader comment and continues until either the next BeginHeader
comment or the end of the file is encountered.

Table 4-1. Dynamic C Library Headers

Header Name Description

Module headers
Make functions and global variables in the library known to
Dynamic C.

Function Description headers
Describe functions. Function headers form the basis for function
lookup help.

/*** BeginHeader func1, var2, */
prototype for func1
extern var2
/*** EndHeader */
definition of func1
declaration for var2
possibly other functions and data
 Language rabbit.com 28

http://www.rabbit.com

 4.9.1.1 Module Key

The module key is usually contained within the first line of the module header. It is a list of function and
data names separated by commas. The list of names may continue on subsequent lines.

It is important to format the BeginHeader comment correctly, otherwise Dynamic C cannot find the
contents of the module. The case of the word “beginheader” is unimportant, but it must be preceded by a
forward slash, 3 asterisks and one space (/***). The forward slash must be the first character on the
line. The BeginHeader comment must end with an asterisk and a forward slash (*/).

The key tells the compiler which functions exist in the module so the compiler can exclude the module if
names in the key are not referenced. Data declarations (constants, structures, unions and variables) as well
as macros and function chains (both #makechain and #funchain statements) do not need to be
named in the key if they are completely defined in the header, i.e, no extern declaration. They are fully
known to the compiler by being completely defined in the module header. An important thing to remember
is that variables declared in a header section will be allocated memory space unless the declaration is pre-
ceded with extern.

 4.9.1.2 Module Header

Every line between the BeginHeader and EndHeader comments belongs to the header of the module.
When a library is linked to an application (i.e., the application has the statement: #use “library_name”),
Dynamic C precompiles every header in the library, and only the headers.

With proper function prototypes and variable declarations, a module header ensures proper type checking
throughout the application program. Prototypes, variables, structures, typedefs and macros declared in a
header section will always be parsed by the compiler if the library is #used, and everything will have
global scope.

It is even permissible to put function bodies in header sections, but it is not recommended for two reasons.
First, because the function will be compiled with any application that #uses the library and since variables
declared in a header section will be allocated memory space unless the declaration is preceded with
extern, the variable declaration should be in the module body instead of the header to save data space.
Second, auto (local) variables are not visible to the debugger when a function is defined (not prototyped)
within a module header. This means that attempting to set a watch or evaluate expression on such a vari-
able will result in an “out of scope / not declared” error or the variable’s stated value will not be correct.

The scope of anything inside the module header is global; this includes compiler directives. Since the
headers are compiled before the module bodies, the last one of a given type of directive encountered will
be in effect and any previous ones will be forgotten.

Using compiler directives like #class or #memmap inside module headers is inadvisable. If it is impor-
tant to set, for example, “#class auto” for some library modules and “#class static” for others, the appropri-
ate directives should be placed inside the module body, not in the module header. Furthermore, since there
is no guaranteed compilation order and compiler directives have global scope, when you issue a compiler
directive to change default behavior for a particular module, at the end of the module you should issue
another compiler directive to change back to the default behavior. For example, if a module body needs to
have its storage class as static, have a “#class static” directive at the beginning of the module body and
“#class auto” at the end.

NOTE: The compiler directive “#class static” is deprecated starting with
Dynamic C 10.44.

/*** BeginHeader [name1, name2,] */
 Language rabbit.com 29

http://www.rabbit.com

 4.9.1.3 Module Body

Every line of code after the EndHeader comment belongs to the body of the module until (1) end-of-file
or (2) the BeginHeader comment of another module. Dynamic C compiles the entire body of a module
if any of the names in the key or header are referenced anywhere in the application. So keep modules
small, don’t put all the functions in a library into one module. If you look at the Dynamic C libraries you’ll
notice that many modules consist of one function. This saves on code size, because only the functions that
are called are actually compiled into the application.

To further minimize waste, define code and data only in the body of a module. It is recommended that a
module header contain only prototypes and extern declarations because they do not generate any code
by themselves. That way, the compiler will generate code or allocate data only if the module is used by the
application program.

4.9.2 Module Sample Code
There are many examples of modules in the Lib directory of Dynamic C. The following code will illus-
trate proper module syntax and show the scope of directives, functions and variables.

There are three modules defined in this code. The first one is responsible for the variable ticks, the sec-
ond and third modules define functions Get_Ticks() and Inc_Ticks that access the variable.
Although Inc_Ticks is an assembly language routine, it has a function prototype in the module header,
allowing the compiler to check calls to it.

/*** BeginHeader ticks*/
extern unsigned long ticks;
/*** EndHeader */

unsigned long ticks;

/*** BeginHeader Get_Ticks */
unsigned long Get_Ticks();
/*** EndHeader */

unsigned long Get_Ticks(){
...
}

/*** BeginHeader Inc_Ticks */
void Inc_Ticks(int i);
/*** EndHeader */

#asm
Inc_Ticks::
or a
ipset 1
...
ipres
ret
#endasm
 Language rabbit.com 30

http://www.rabbit.com

If the application program calls Inc_Ticks or Get_Ticks() (or both), the module bodies corre-
sponding to the called routines will be compiled. The compilation of these routines triggers compilation of
the module body corresponding to ticks because the functions use the variable ticks.

Let’s say the above file is named mylibrary.lib. If an application has the statement
#use “mylibrary.lib” and then calls func_b(), will the printf statement be reached? The
answer is no. The order of compilation for module headers is sequential from the beginning of the file,
therefore, the macro SECONDHEADER is undefined when the first module header is parsed.

If an application #uses this library and then makes a call to func_a(), will that function’s print state-
ment be reached? The answer is yes. Since all the headers were compiled first, the macro
SECONDHEADER is defined when the first module body is compiled.

4.9.3 Important Notes
Remember that in a Dynamic C application there is only one file that contains main(). All other source
files used by the file that contains main() are regarded as library files. Each library must be included in a
LIB.DIR (or a user defined replacement for it). Although Dynamic C uses .LIB as the library extension,
you may use anything you like as long as the complete path is entered in your LIB.DIR file.

There is no way to define file scope variables in Dynamic C libraries.

/*** BeginHeader func_a */

int func_a();

#ifdef SECONDHEADER
#define XYZ
#endif

/*** EndHeader */

int func_a(){
#ifdef SECONDHEADER
printf ("I am function A.\n");
#endif
}

/*** BeginHeader func_b */

int func_b();
#define SECONDHEADER

/*** EndHeader */

#ifdef XYZ
#define FUNCTION_B
#endif

int func_b() {
#ifdef FUNCTION_B
printf ("I am function B.\n");
#endif
}

 Language rabbit.com 31

http://www.rabbit.com

4.10 Function Description Headers
Each user-callable function in a Dynamic C library has a descriptive header preceding the function to
describe the function. Function headers are extracted by Dynamic C to provide on-line help messages.

The header is a specially formatted comment, such as the following example.

If this format is followed, user-created library functions will show up in the Function Lookup <Ctrl+H>
feature if the library is listed in lib.dir or its replacement. Note that these sections are scanned in when
Dynamic C starts and changed libraries are rescanned with every Ctrl+H.

4.11 Support Files
Dynamic C has several support files that are necessary in building an application. These files are listed
below.

/* START FUNCTION DESCRIPTION **********************
WrIOport <IO.LIB>
SYNTAX: void WrIOport(int portaddr, int value);
DESCRIPTION:
Writes data to the specified I/O port.
PARAMETER1: portaddr - register address of the port.
PARAMETER2: value - data to be written to the port.

RETURN VALUE: None
KEY WORDS: parallel port

SEE ALSO: RdIOport
END DESCRIPTION ***********************************/

Table 4-2. Dynamic C Support Files

File Name Purpose of File

DCW.CFG Contains configuration data for the target controller.

DC.HH
Contains prototypes, basic type definitions, #define, and default modes for
Dynamic C. This file can be modified by the programmer.

DEFAULT.H
Contains a set of #use directives for each control product that Rabbit ships. This
file can be modified.

LIB.DIR

Contains pathnames for all libraries that are to be known to Dynamic C. The
programmer can add to, or remove libraries from this list. The factory default is for
this file to contain all the libraries on the Dynamic C distribution disk. Any library
that is to be used in a Dynamic C program must be listed in the file LIB.DIR, or
another *.DIR file specified by the user.

PROJECT.DCP
DEFAULT.DCP

These files hold the default compilation environment that is shipped from the
factory. DEFAULT.DCP may be modified, but not PROJECT.DCP. See Chapter 18
for details on project files.
 Language rabbit.com 32

http://www.rabbit.com

 5. MULTITASKING WITH DYNAMIC C
In a multitasking environment, more than one task (each representing a sequence of operations) can
appear to execute in parallel. In reality, a single processor can only execute one instruction at a time. If an
application has multiple tasks to perform, multitasking software can usually take advantage of natural
delays in each task to increase the overall performance of the system. Each task can do some of its work
while the other tasks are waiting for an event, or for something to do. In this way, the tasks execute almost
in parallel.

There are two types of multitasking available for developing applications in Dynamic C: preemptive and
cooperative. In a cooperative multitasking environment, each well-behaved task voluntarily gives up con-
trol when it is waiting, allowing other tasks to execute. Dynamic C has language extensions, costatements
and cofunctions, to support cooperative multitasking.

Preemptive multitasking is supported by the slice statement, which allows a computation to be divided into
small slices of a few milliseconds each, and by the µC/OS-II real-time kernel.

5.1 Cooperative Multitasking
In the absence of a preemptive multitasking kernel or operating system, a programmer given a real-time
programming problem that involves running separate tasks on different time scales will often come up
with a solution that can be described as a big loop driving state machines.

Figure 5.1 Big Loop
Dynamic C User’s Manual rabbit.com 33

http://www.rabbit.com

Within this endless loop, tasks are accomplished by small fragments of a program that cycle through a
series of states. The state is typically encoded as numerical values in C variables.

State machines can become quite complicated, involving a large number of state variables and a large
number of states. The advantage of the state machine is that it avoids busy waiting, which is waiting in a
loop until a condition is satisfied. In this way, one big loop can service a large number of state machines,
each performing its own task, and no one is busy waiting.

The cooperative multitasking language extensions added to Dynamic C use the big loop and state machine
concept, but C code is used to implement the state machine rather than C variables. The state of a task is
remembered by a statement pointer that records the place where execution of the block of statements has
been paused to wait for an event.

To multitask using Dynamic C language extensions, most application programs will have some flavor of
this simple structure:

5.2 A Real-Time Problem
The following sequence of events is common in real-time programming.

Start:

1. Wait for a push button to be pressed.

2. Turn on the first device.

3. Wait 60 seconds.

4. Turn on the second device.

5. Wait 60 seconds.

6. Turn off both devices.

7. Go back to the start.

The most rudimentary way to perform this function is to idle (“busy wait”) in a tight loop at each of the
steps where waiting is specified. But most of the computer time will used waiting for the task, leaving no
execution time for other tasks.

main() {
int i;
while(1) { // endless loop for multitasking framework
costate { // task 1
. . . // body of costatement
}
costate { // task 2
... // body of costatement
}
}
}

 Multitasking with Dynamic C rabbit.com 34

http://www.rabbit.com

5.2.1 Solving the Real-Time Problem with a State Machine
 Here is what a state machine solution might look like.

If there are other tasks to be run, this control problem can be solved better by creating a loop that processes
a number of tasks. Now each task can relinquish control when it is waiting, thereby allowing other tasks to
proceed. Each task then does its work in the idle time of the other tasks.

5.3 Costatements
Costatements are Dynamic C extensions to the C language which simplify implementation of state
machines. Costatements are cooperative because their execution can be voluntarily suspended and later
resumed. The body of a costatement is an ordered list of operations to perform -- a task. Each costatement
has its own statement pointer to keep track of which item on the list will be performed when the costate-
ment is given a chance to run. As part of the startup initialization, the pointer is set to point to the first
statement of the costatement.

The statement pointer is effectively a state variable for the costatement or cofunction. It specifies the state-
ment where execution is to begin when the program execution thread hits the start of the costatement.

All costatements in the program, except those that use pointers as their names, are initialized when the
function chain _GLOBAL_INIT is called. _GLOBAL_INIT is called automatically by premain before
main is called. Calling _GLOBAL_INIT from an application program will cause reinitialization of any-
thing that was initialized in the call made by premain.

task1state = 1; // initialization:
while(1){

switch(task1state){

case 1:
if(buttonpushed()){

task1state=2; turnondevice1();
timer1 = time; // time incremented every second

}
break;

case 2:
if((time-timer1) >= 60L){

task1state=3; turnondevice2();
timer2=time;

}
break;

case 3:
if((time-timer2) >= 60L){

task1state=1; turnoffdevice1();
turnoffdevice2();

}
break;

}
/* other tasks or state machines */

}

 Multitasking with Dynamic C rabbit.com 35

http://www.rabbit.com

5.3.1 Solving the Real-Time Problem with Costatements
The Dynamic C costatement provides an easier way to control the tasks. It is relatively easy to add a task
that checks for the use of an emergency stop button and then behaves accordingly.

The solution is elegant and simple. Note that the second costatement looks much like the original descrip-
tion of the problem. All the branching, nesting and variables within the task are hidden in the implementa-
tion of the costatement and its waitfor statements.

5.3.2 Costatement Syntax
The keyword costate identifies the statements enclosed in the curly braces that follow as a costatement.

costate [name [state]] { [statement | yield; | abort; | waitfor(
expression);] . . .}

name can be one of the following:

• A valid C name not previously used. This results in the creation of a structure of type CoData of the
same name.

• The name of a local or global CoData structure that has already been defined

• A pointer to an existing structure of type CoData

Costatements can be named or unnamed. If name is absent the compiler creates an unnamed structure of
type CoData for the costatement.

state can be one of the following:

• always_on

The costatement is always active. This means the costatement will execute every time it is encoun-
tered in the execution thread, unless it is made inactive by CoPause(). It may be made active
again by CoResume().

while(1){
costate{ ... } // task 1

costate{ // task 2
waitfor(buttonpushed());
turnondevice1();
waitfor(DelaySec(60L));
turnondevice2();
waitfor(DelaySec(60L));
turnoffdevice1();
turnoffdevice2();

}

costate{ ... } // task n
}

 Multitasking with Dynamic C rabbit.com 36

http://www.rabbit.com

• init_on

The costatement is initially active and will automatically execute the first time it is encountered in
the execution thread. The costatement becomes inactive after it completes (or aborts). The costate-
ment can be made inactive by CoPause().

If state is absent, a named costatement is initialized in a paused init_on condition. This means that
the costatement will not execute until CoBegin() or CoResume() is executed. It will then execute
once and become inactive again.

Unnamed costatements are always_on. You cannot specify init_on without specifying a costatement
name.

5.3.3 Control Statements
This section describes the control statements identified by the keywords: waitfor, yield and abort.

waitfor (expression);

The keyword waitfor indicates a special waitfor statement and not a function call. Each time
waitfor is executed, expression is evaluated. If true (non-zero), execution proceeds to the next state-
ment; otherwise a jump is made to the closing brace of the costatement or cofunction, with the statement
pointer continuing to point to the waitfor statement. Any valid C function that returns a value can be
used in a waitfor statement.

Figure 5.2 shows the execution thread through a costatement when a waitfor evaluates to false. The
diagram on the left side shows which statements are executed the first time through the costatement. The
diagram on the right shows that when the execution thread again reaches the costatement the only state-
ment executed is the waitfor. As long as the waitfor continues to evaluate to false, it will be the only
statement executed within the costatement.

Figure 5.2 Execution thread when waitfor evaluates to false
 Multitasking with Dynamic C rabbit.com 37

http://www.rabbit.com

Figure 5.3 shows the execution thread through a costatement when a waitfor evaluates to true.

Figure 5.3 Execution thread when waitfor evaluates to true

yield

The yield statement makes an unconditional exit from a costatement or a cofunction. Execution contin-
ues at the statement following yield the next time the costatement or cofunction is encountered by the
execution thread.

Figure 5.4 Execution thread with yield statement
 Multitasking with Dynamic C rabbit.com 38

http://www.rabbit.com

abort

The abort statement causes the costatement or cofunction to terminate execution. If a costatement is
always_on, the next time the program reaches it, it will restart from the top. If the costatement is not
always_on, it becomes inactive and will not execute again until turned on by some other software.

Figure 5.5 Execution thread with abort statement

A costatement can have as many C statements, including abort, yield, and waitfor statements, as
needed. Costatements can be nested.

5.4 Advanced Costatement Topics
Each costatement has a structure of type CoData. This structure contains state and timing information. It
also contains the address inside the costatement that will execute the next time the program thread reaches
the costatement. A value of zero in the address location indicates the beginning of the costatement.

5.4.1 The CoData Structure
typedef struct {

char CSState;
unsigned int lastlocADDR;
char lastlocCBR;
char ChkSum;
char firsttime;
union{

unsigned long ul;
struct {

unsigned int u1;
unsigned int u2;

} us;
} content;
char ChkSum2;

} CoData;
 Multitasking with Dynamic C rabbit.com 39

http://www.rabbit.com

5.4.2 CoData Fields
This section describes the fields of the CoData structure.

CSState

The CSState field contains two flags, STOPPED and INIT. The possible flag values and their meaning
are in the table below.

The function isCoDone() returns true (1) if both the STOPPED and INIT flags are set. The function

isCoRunning() returns true (1) if the STOPPED flag is not set.

The CSState field applies only if the costatement has a name. The CSState flag has no meaning for
unnamed costatements or cofunctions.

Last Location

The two fields lastlocADDR and lastlocCBR represent the 24-bit address of the location at which to
resume execution of the costatement. If lastlocADDR is zero (as it is when initialized), the costatement
executes from the beginning, subject to the CSState flag. If lastlocADDR is nonzero, the costatement
resumes at the 24-bit address represented by lastlocADDR and lastlocCBR.

These fields are zeroed whenever one of the following is true:

• the CoData structure is initialized by a call to _GLOBAL_INIT, CoBegin or CoReset

• the costatement is executed to completion

• the costatement is aborted.

Check Sum

The ChkSum field is a one-byte check sum of the address. (It is the exclusive-or result of the bytes in
lastlocADDR and lastlocCBR.) If ChkSum is not consistent with the address, the program will
generate a run-time error and reset. The check sum is maintained automatically. It is initialized by
_GLOBAL_INIT, CoBegin and CoReset.

First Time

The firsttime field is a flag that is used by a waitfor, or waitfordone statement. It is set to 1
before the statement is evaluated the first time. This aids in calculating elapsed time for the functions
DelayMs, DelaySec, DelayTicks, IntervalTick, IntervalMs, and IntervalSec.

Table 5-1. Flags that Specify the Run Status of a Costatement

STOPPED INIT State of Costatement

yes yes
Done, or has been initialized to run, but set to
inactive. Set by CoReset().

yes no Paused, waiting to resume. Set by CoPause().

no yes Initialized to run. Set by CoBegin().

no no
Running. CoResume() will return the flags to
this state.
 Multitasking with Dynamic C rabbit.com 40

http://www.rabbit.com

Content

The content field (a union) is used by the costatement or cofunction delay routines to store a delay
count.

Check Sum 2

The ChkSum2 field is currently unused.

5.4.3 Pointer to CoData Structure
To obtain a pointer to a named costatement’s CoData structure, do the following:

The storage class of a named CoData structure must be static.

5.4.4 Functions for Use With Named Costatements
For detailed function descriptions, please see the Dynamic C Function Reference Manual or select Func-
tion Lookup/Insert from Dynamic C’s Help menu (keyboard shortcut is <Ctrl-H>).

All of these functions are in COSTATE.LIB. Each one takes a pointer to a CoData struct as its only
parameter.

int isCoDone(CoData* p);
This function returns true if the costatement point to by p is initialized and not running.

int isCoRunning(CoData* p);
This function returns true if the costatement pointed to by p will run if given a continuation call.

void CoBegin(CoData* p);
This function initializes a costatement’s CoData structure so that the costatement will be execut-
ed next time it is encountered.

void CoPause(CoData* p);
This function will change CoData so that the associated costatement is paused. When a cos-
tatement is called in this state it does an implicit yield until it is released by a call from
CoResume or CoBegin.

void CoReset(CoData* p);
This function initializes a costatement's CoData structure so that the costatement will not be exe-
cuted the next time it is encountered.

void CoResume(CoData* p);
This function unpauses a paused costatement. The costatement resumes the next time it is called.

static CoData cost1; // allocate memory for a CoData struct
static CoData *pcost1;

pcost1 = &cost1; // get pointer to the CoData struct
...
CoBegin (pcost1); // initialize CoData struct
costate pcost1 { // pcost1 is the costatement name and also a

... // pointer to its CoData structure.
}

 Multitasking with Dynamic C rabbit.com 41

http://www.rabbit.com

5.4.5 Firsttime Functions
In a function definition, the keyword firsttime causes the function to have an implicit first parameter:
a pointer to the CoData structure of the costatement that calls it. User-defined firsttime functions are
allowed.

The following firsttime functions are defined in COSTATE.LIB.

DelayMs(), DelaySec(), DelayTicks()
IntervalMs(), IntervalSec(), IntervalTick()

For more information see the Dynamic C Function Reference Manual. These functions should be called
inside a waitfor statement because they do not yield while waiting for the desired time to elapse, but
instead return 0 to indicate that the desired time has not yet elapsed.

5.4.6 Shared Global Variables
The variables SEC_TIMER, MS_TIMER and TICK_TIMER are shared, making them atomic when being
updated. They are defined and initialized in VDRIVER.LIB. They are updated by the periodic interrupt
and are used by firsttime functions. They should not be modified by an application program. Costate-
ments and cofunctions depend on these timer variables being valid for use in waitfor statements that
call functions that read them. For example, the following statement will access SEC_TIMER.

waitfor(DelaySec(3));

5.5 Cofunctions
Cofunctions, like costatements, are used to implement cooperative multitasking. But, unlike costatements,
they have a form similar to functions in that arguments can be passed to them and a value can be returned
(but not a structure).

The default storage class for a cofunction’s variables is Instance. An instance variable behaves like
a static variable, i.e., its value persists between function calls. Each instance of an Indexed Cofunction
has its own set of instance variables. The compiler directive #class does not change the default storage
class for a cofunction’s variables.

All cofunctions in the program are initialized when the function chain _GLOBAL_INIT is called. This
call is made by premain.
 Multitasking with Dynamic C rabbit.com 42

http://www.rabbit.com

5.5.1 Cofunction Syntax
A cofunction definition is similar to the definition of a C function.

cofunc|scofunc type [name][[dim]]([type arg1, ..., type argN])
 { [statement | yield; | abort; | waitfor(expression);]... }

cofunc, scofunc

The keywords cofunc or scofunc (a single-user cofunction) identify the statements enclosed in curly
braces that follow as a cofunction.

type

Whichever keyword (cofunc or scofunc) is used is followed by the data type returned (void, int,
etc.).

name

A name can be any valid C name not previously used. This results in the creation of a structure of type
CoData of the same name.

dim

The cofunction name may be followed by a dimension if an indexed cofunction is being defined.

cofunction arguments (arg1, . . ., argN)

As with other Dynamic C functions, cofunction arguments are passed by value.

cofunction body

A cofunction can have as many C statements, including abort, yield, waitfor, and waitfordone
statements, as needed. Cofunctions can contain calls to other cofunctions.

5.5.2 Calling Restrictions
You cannot assign a cofunction to a function pointer then call it via the pointer.

Cofunctions are called using a waitfordone statement. Cofunctions and the waitfordone statement
may return an argument value as in the following example.

The keyword waitfordone (can be abbreviated to the keyword wfd) must be inside a costatement or
cofunction. Since a cofunction must be called from inside a wfd statement, ultimately a wfd statement
must be inside a costatement. If only one cofunction is being called by wfd the curly braces are not
needed.

The wfd statement executes cofunctions and firsttime functions. When all the cofunctions and
firsttime functions listed in the wfd statement are complete (or one of them aborts), execution pro-
ceeds to the statement following wfd. Otherwise a jump is made to the ending brace of the costatement or

int j,k,x,y,z;
j = waitfordone x = Cofunc1;
k = waitfordone{ y=Cofunc2(...); z=Cofunc3(...); }
 Multitasking with Dynamic C rabbit.com 43

http://www.rabbit.com

cofunction where the wfd statement appears and when the execution thread comes around again control is
given back to wfd.

In the example above, x, y and z must be set by return statements inside the called cofunctions. Exe-
cuting a return statement in a cofunction has the same effect as executing the end brace. In the example
above, the variable k is a status variable that is set according to the following scheme. If no abort has taken
place in any cofunction, k is set to 1, 2, ..., n to indicate which cofunction inside the braces finished exe-
cuting last. If an abort takes place, k is set to -1, -2, ..., -n to indicate which cofunction caused the abort.

 5.5.2.1 Cofunctions and Return Statements

 More than one return statement in a cofunction will result in unpredictable behavior.

 5.5.2.2 Costate Within a Cofunc

In all but trivial cases (where the costate is really not necessary), a costate within a cofunc causes execu-
tion problems ranging from never completing the cofunc to unexpected interrupts or target lockups. To
avoid these problems, do not introduce costates with nested wfd cofuncs into a cofunc. If you find yourself
coding such a thing, consider these alternatives:

1. Intermediate regular functions can be used between the cofuncs to isolate them.

2. A regular waitfor(function) can be substituted for the top level costate's wfd cofunction.

3. The nested costates with wfd cofuncs can be moved up into the body of the calling function, replac-
ing the top-level costate with the wfd cofunc.

A compiler error will be generated if a costate is found within a cofunction.

 5.5.2.3 Using the IX Register

Functions called from within a cofunction may use the IX register if they restore it before the cofunction is
exited, which includes an exit via an incomplete waitfordone statement.

In the case of an application that uses the #useix directive, the IX register will be corrupted when any
stack-variable using function is called from within a cofunction, or if a stack-variable using function con-
tains a call to a cofunction.

5.5.3 CoData Structure
The CoData structure discussed in Section 5.4.1 applies to cofunctions; each cofunction has an associated
CoData structure.

5.5.4 Firsttime Functions
The firsttime functions discussed in “Firsttime Functions” on page 42 can also be used inside cofunc-
tions. They should be called inside a waitfor statement. If you call these functions from inside a wfd
statement, no compiler error is generated, but, since these delay functions do not yield while waiting for
the desired time to elapse, but instead return 0 to indicate that the desired time has not yet elapsed, the wfd
statement will consider a return value to be completion of the firsttime function and control will pass
to the statement following the wfd.
 Multitasking with Dynamic C rabbit.com 44

http://www.rabbit.com

5.5.5 Types of Cofunctions
There are three types of cofunctions: simple, indexed and single-user. Which one to use depends on the
problem that is being solved. A single-user, indexed cofunction is not valid.

 5.5.5.1 Simple Cofunction

A simple cofunction has only one instance and is similar to a regular function with a costate taking up
most of the function’s body.

 5.5.5.2 Indexed Cofunction

An indexed cofunction allows the body of a cofunction to be called more than once with different parame-
ters and local variables. The parameters and the local variable that are not declared static have a special
lifetime that begins at a first time call of a cofunction instance and ends when the last curly brace of the
cofunction is reached or when an abort or return is encountered.

The indexed cofunction call is a cross between an array access and a normal function call, where the array
access selects the specific instance to be run.

Typically this type of cofunction is used in a situation where N identical units need to be controlled by the
same algorithm. For example, a program to control the door latches in a building could use indexed
cofunctions. The same cofunction code would read the key pad at each door, compare the passcode to the
approved list, and operate the door latch. If there are 25 doors in the building, then the indexed cofunction
would use an index ranging from 0 to 24 to keep track of which door is currently being tested. An indexed
cofunction has an index similar to an array index.

waitfordone{ ICofunc[n](...); ICofunc2[m](...); }

The value between the square brackets must be positive and less than the maximum number of instances
for that cofunction. There is no runtime checking on the instance selected, so, like arrays, the programmer
is responsible for keeping this value in the proper range.

NOTE: Costatements are not supported inside indexed cofunctions. Single user
cofunctions cannot be indexed.

 5.5.5.3 Single User Cofunction

Since cofunctions are executing in parallel, the same cofunction normally cannot be called at the same
time from two places in the same big loop. For example, the following statement containing two simple
cofunctions will generally cause a fatal error.

waitfordone{ cofunc_nameA(); cofunc_nameA();}

This is because the same cofunction is being called from the second location after it has already started,
but not completed, execution for the call from the first location. The cofunction is a state machine and it
has an internal statement pointer that cannot point to two statements at the same time.

Single-user cofunctions can be used instead. They can be called simultaneously because the second and
additional callers are made to wait until the first call completes. The following statement, which contains
two calls to single-user cofunction, is okay.

waitfordone(scofunc_nameA(); scofunc_nameA();}
 Multitasking with Dynamic C rabbit.com 45

http://www.rabbit.com

loopinit()

This function should be called in the beginning of a program that uses single-user cofunctions. It initializes
internal data structures that are used by loophead().

loophead()

This function should be called within the “big loop” in your program. It is necessary for proper single-user
cofunction abandonment handling.

Example

5.5.6 Types of Cofunction Calls
A wfd statement makes one of three types of calls to a cofunction.

 5.5.6.1 First Time Call

A first time call happens when a wfd statement calls a cofunction for the first time in that statement. After
the first time, only the original wfd statement can give this cofunction instance continuation calls until
either the instance is complete or until the instance is given another first time call from a different state-
ment. The lifetime of a cofunction instance stretches from a first time call until its terminal call or until its
next first time call.

 5.5.6.2 Continuation Call

A continuation call is when a cofunction that has previously yielded is given another chance to run by the
enclosing wfd statement. These statements can only call the cofunction if it was the last statement to give
the cofunction a first time call or a continuation call.

 5.5.6.3 Terminal Call

A terminal call ends with a cofunction returning to its wfd statement without yielding to another cofunc-
tion. This can happen when it reaches the end of the cofunction and does an implicit return, when the
cofunction does an explicit return, or when the cofunction aborts.

// echoes characters
main() {

int c;
serAopen(19200);
loopinit();
while (1) {

loophead();
costate {

wfd c = cof_serAgetc();
wfd cof_serAputc(c);

}
}
serAclose();

}

 Multitasking with Dynamic C rabbit.com 46

http://www.rabbit.com

5.5.7 Special Code Blocks
The following special code blocks can appear inside a cofunction.

everytime { statements }

This must be the first statement in the cofunction. The everytime statement block will be executed on
every cofunc continuation call no matter where the statement pointer is pointing. After the every-
time statement block is executed, control will pass to the statement pointed to by the cofunction’s
statement pointer.

The everytime statement block will not be executed during the initial cofunc entry call.

abandon { statements }

This keyword applies to single-user cofunctions only and must be the first statement in the body of the
cofunction. The statements inside the curly braces will be executed if the single-user cofunction is forc-
ibly abandoned. A call to loophead() (defined in COFUNC.LIB) is necessary for abandon state-
ments to execute.

Example

Samples/COFUNC/ COFABAND.C illustrates the use of abandon.

In this example two tasks in main() are requesting access to SCofTest. The first request is honored
and the second request is held. When loophead() notices that the first caller is not being called each
time around the loop, it cancels the request, calls the abandonment code and allows the second caller in.

scofunc SCofTest(int i){
abandon {
printf("CofTest was abandoned\n");
}
while(i>0) {
printf("CofTest(%d)\n",i);
yield;
}
}

main(){
int x;
for(x=0;x<=10;x++) {
loophead();
if(x<5) {
costate {
wfd SCofTest(1); // first caller
}
}
costate {
wfd SCofTest(2); // second caller
}
}
}
 Multitasking with Dynamic C rabbit.com 47

http://www.rabbit.com

5.5.8 Solving the Real-Time Problem with Cofunctions
Cofunctions, with their ability to receive arguments and return values, provide more flexibility and speci-
ficity than our previous solutions.

Using cofunctions, new machines can be added with only trivial code changes. Making
buttonpushed() a cofunction allows more specificity because the value returned can indicate a partic-
ular button in an array of buttons. Then that value can be passed as an argument to the cofunctions
turnondevice and turnoffdevice.

5.6 Patterns of Cooperative Multitasking
Sometimes a task may be something that has a beginning and an end. For example, a cofunction to trans-
mit a string of characters via the serial port begins when the cofunction is first called, and continues during
successive calls as control cycles around the big loop. The end occurs after the last character has been sent
and the waitfordone condition is satisified. This type of a call to a cofunction might look like this:

waitfordone{ SendSerial("string of characters"); }
[next statement]

The next statement will execute after the last character is sent.

Some tasks may not have an end. They are endless loops. For example, a task to control a servo loop may
run continuously to regulate the temperature in an oven. If there are a a number of tasks that need to run
continuously, then they can be called using a single waitfordone statement as shown below.

costate {
waitfordone { Task1(); Task2(); Task3(); Task4(); }
[to come here is an error]

}

Each task will receive some execution time and, assuming none of the tasks is completed, they will con-
tinue to be called. If one of the cofunctions should abort, then the waitfordone statement will abort,
and corrective action can be taken.

for(;;){
costate{ // task 1
wfd emergencystop();
for (i=0; i<MAX_DEVICES; i++)
wfd turnoffdevice(i);
}

costate{ // task 2
wfd x = buttonpushed();
wfd turnondevice(x);
waitfor(DelaySec(60L));
wfd turnoffdevice(x);
}
...
costate{ ... } // task n
}

 Multitasking with Dynamic C rabbit.com 48

http://www.rabbit.com

5.7 Timing Considerations
In most instances, costatements and cofunctions are grouped as periodically executed tasks. They can be
part of a real-time task, which executes every n milliseconds as shown below using costatements.

Figure 5.6 Costatement as Part of Real-Time Task

If all goes well, the first costatement will be executed at the periodic rate. The second costatement will,
however, be delayed by the first costatement. The third will be delayed by the second, and so on. The fre-
quency of the routine and the time it takes to execute comprise the granularity of the routine.

If the routine executes every 25 milliseconds and the entire group of costatements executes in 5 to 10 mil-
liseconds, then the granularity is 30 to 35 milliseconds. Therefore, the delay between the occurrence of a
waitfor event and the statement following the waitfor can be as much as the granularity, 30 to 35
ms. The routine may also be interrupted by higher priority tasks or interrupt routines, increasing the varia-
tion in delay.

The consequences of such variations in the time between steps depends on the program’s objective. Sup-
pose that the typical delay between an event and the controller’s response to the event is 25 ms, but under
unusual circumstances the delay may reach 50 ms. An occasional slow response may have no conse-
quences whatsoever. If a delay is added between the steps of a process where the time scale is measured in
seconds, then the result may be a very slight reduction in throughput.

If there is a delay between sensing a defective product on a moving belt and activating the reject solenoid
that pushes the object into the reject bin, the delay could be serious. If a critical delay cannot exceed 40
ms, then a system will sometimes fail if its worst-case delay is 50 ms.

5.7.1 waitfor Accuracy Limits
If an idle loop is used to implement a delay, the processor continues to execute statements almost immedi-
ately (within nanoseconds) after the delay has expired. In other words, idle loops give precise delays. Such
precision cannot be achieved with waitfor delays.

A particular application may not need very precise delay timing. Suppose the application requires a 60-
second delay with only 100 ms of delay accuracy; that is, an actual delay of 60.1 seconds is considered
acceptable. Then, if the processor guarantees to check the delay every 50 ms, the delay would be at most
60.05 seconds, and the accuracy requirement is satisfied.
 Multitasking with Dynamic C rabbit.com 49

http://www.rabbit.com

5.8 Overview of Preemptive Multitasking
In a preemptive multitasking environment, tasks do not voluntarily relinquish control. Tasks are scheduled
to run by priority level and/or by being given a certain amount of time.

There are two ways to accomplish preemptive multitasking using Dynamic C. The first way is via a
Dynamic C construct called the “slice” statement (described in Section 5.9). The second way is µC/OS-II,
a real-time, preemptive kernel that runs on the Rabbit microprocessor and is fully supported by Dynamic C
(described in Section 5.10).

5.9 Slice Statements
The slice statement, based on the costatement language construct, allows the programmer to run a block
of code for a specific amount of time.

5.9.1 Slice Syntax
slice ([context_buffer,] context_buffer_size, time_slice)

[name]{[statement|yield;|abort;|waitfor(expression);]}

context_buffer_size

This value must evaluate to a constant integer. The value specifies the number of bytes for the buffer
context_buffer. It needs to be large enough for worst-case stack usage by the user program and
interrupt routines.

time_slice

The amount of time in ticks for the slice to run. One tick = 1/1024 second.

name

When defining a named slice statement, you supply a context buffer as the first argument. When you
define an unnamed slice statement, this structure is allocated by the compiler.

[statement | yield; | abort; | waitfor(expression);]

The body of a slice statement may contain:

• Regular C statements

• yield statements to make an unconditional exit.

• abort statements to make an execution jump to the very end of the statement.

• waitfor statements to suspend progress of the slice statement pending some condition indicated by
the expression.
 Multitasking with Dynamic C rabbit.com 50

http://www.rabbit.com

5.9.2 Usage
The slice statement can run both cooperatively and preemptively all in the same framework. A slice
statement, like costatements and cofunctions, can suspend its execution with an abort, yield, or
waitfor. It can also suspend execution with an implicit yield determined by the time_slice
parameter that was passed to it. A routine called from the periodic interrupt forms the basis for scheduling
slice statements. It counts down the ticks and changes the slice statement’s context.

5.9.3 Restrictions
Since a slice statement has its own stack, local auto variables and parameters cannot be accessed while
in the context of a slice statement. Any function called from the slice statement performs normally.

Only one slice statement can be active at any time, which eliminates the possibility of nesting slice
statements or using a slice statement inside a function that is either directly or indirectly called from a
slice statement. The only methods supported for leaving a slice statement are completely executing
the last statement in the slice, or executing an abort, yield or waitfor statement.

The return, continue, break, and goto statements are not supported.

Slice statements cannot be used with µC/OS-II or TCP/IP.

5.9.4 Slice Data Structure
Internally, the slice statement uses two structures to operate. When defining a named slice statement,
you supply a context buffer as the first argument. When you define an unnamed slice statement, this
structure is allocated by the compiler. Internally, the context buffer is represented by the SliceBuffer
structure below.

5.9.5 Slice Internals
When a slice statement is given control, it saves the current context and switches to a context associated
with the slice statement. After that, the driving force behind the slice statement is the timer interrupt.
Each time the timer interrupt is called, it checks to see if a slice statement is active. If a slice state-
ment is active, the timer interrupt decrements the time_out field in the slice’s SliceData. When
the field is decremented to zero, the timer interrupt saves the slice statement’s context into the
SliceBuffer and restores the previous context. Once the timer interrupt completes, the flow of control
is passed to the statement directly following the slice statement. A similar set of events takes place
when the slice statement does an explicit yield/abort/waitfor.

struct SliceData {
int time_out;
void* my_sp;
void* caller_sp;
CoData codata;
}

struct SliceBuffer {
SliceData slice_data;
char stack[]; // fills rest of the slice buffer
};
 Multitasking with Dynamic C rabbit.com 51

http://www.rabbit.com

Example 1

Two slice statements and a costatement will appear to run in parallel. Each block will run indepen-
dently, but the slice statement blocks will suspend their operation after 20 ticks for slice_a and 40
ticks for slice_b. Costate a will not release control until it either explicitly yields, aborts, or completes.
In contrast, slice_a will run for at most 20 ticks, then slice_b will begin running. Costate a will get
its next opportunity to run about 60 ticks after it relinquishes control.

Example 2

This code guarantees that the first slice starts on TICK_TIMER evenly divisible by 80 and the second
starts on TICK_TIMER evenly divisible by 105.

main () {
int x, y, z;
...
for (;;) {

costate a {
...

}
slice(500, 20) { // slice_a

...
}
slice(500, 40) { // slice_b

...
}

}
}

main() {
for(;;) {

costate {
slice(500,20) { // slice_a

waitfor(IntervalTick(80));
...

}
slice(500,50) { // slice_b

waitfor(IntervalTick(105);
...

}
}

}
}

 Multitasking with Dynamic C rabbit.com 52

http://www.rabbit.com

Example 3

This approach is more complicated, but will allow you to spend the idle time doing a low-priority back-
ground task.

5.10 µC/OS-II
µC/OS-II is a simple, clean, efficient, easy-to-use real-time operating system that runs on the Rabbit
microprocessor and is fully supported by the Dynamic C development environment. With Dynamic C,
there is no fee to pay for the “Object Code Distribution License” that is usually required for embedding
µC/OS-II in a product.

µC/OS-II is capable of intertask communication and synchronization via the use of semaphores, mail-
boxes, and queues. User-definable system hooks are supplied for added system and configuration control
during task creation, task deletion, context switches, and time ticks.

For more information on µC/OS-II, please refer to Jean J. Labrosse’s book, MicroC/OS-II, The Real-Time
Kernel (ISBN: 0-87930-543-6). The data structures (e.g., Event Control Block) referenced in the Dynamic
C µC/OS-II function descriptions are fully explained in Labrosse’s book, available for purchase at:

www.rabbit.com/store/

http://www.ucos-ii.com/

The Dynamic C version of µC/OS-II has the new features and API changes available in version 2.51 of
µC/OS-II. The documentation for these changes will be in the /Samples/UCos-II directory. The file
Newv251.pdf contains all of the features added since version 2.00 and Relv251.pdf contains
release notes for version 2.51.

main() {
int time_left;
long start_time;
for(;;) {

start_time = TICK_TIMER;
slice(500,20) { // slice_a

waitfor(IntervalTick(80));
...

}
slice(500,50) { // slice_b

waitfor(IntervalTick(105));
...

}
time_left = 75-(TICK_TIMER-start_time);
if(time_left>0) {

slice(500,75-(TICK_TIMER-start_time)) { // slice_c
...

}
}

}

}

 Multitasking with Dynamic C rabbit.com 53

http://www.rabbit.com
http://www.rabbitsemiconductor.com/store/
http://www.ucos-ii.com/

The remainder of this section discusses the following:

• Dynamic C enhancements to µC/OS-II

• Tasking aware ISRs

• Dynamic C library reentrancy

• How to get a µC/OS-II application running

• TCP/IP compatibility

• API function descriptions

• Debugging tips

5.10.1 Changes to µC/OS-II
Minor changes have been made to µC/OS-II to take full advantage of services provided by Dynamic C.

5.10.1.1 Ticks per Second

In most implementations of µC/OS-II, OS_TICKS_PER_SEC informs the operating system of the rate at
which OSTimeTick is called; this macro is used as a constant to match the rate of the periodic interrupt.
In µC/OS-II for the Rabbit, however, changing this macro will change the tick rate of the operating system
set up during OSInit. Usually, a real-time operating system has a tick rate of 10 Hz to 100 Hz, or 10–100
ticks per second. Since the periodic interrupt on the Rabbit occurs at a rate of 2 kHz, it is recommended
that the tick rate be a power of 2 (e.g., 16, 32, or 64).

Keep in mind that the higher the tick rate, the more overhead the system will incur. It is possible to set the
value of OS_TICKS_PER_SECOND so high that task switching becomes the predominant operation leav-
ing too little time for the user processes to run properly. The only way to determine if your value is too
high is to see if your tasks run properly at a lower value.

In the Rabbit version of µC/OS-II, the number of ticks per second defaults to 64. The actual number of
ticks per second may be slightly different than the desired ticks per second if TicksPerSec does not
evenly divide 2048.

Changing the default tick rate is done by simply defining OS_TICKS_PER_SEC to the desired tick rate
before calling OSInit(). For example, to change the tick rate to 32 ticks per second:

#define OS_TICKS_PER_SEC 32
...
OSInit();
...
OSStart();

5.10.1.2 Task Creation

In a µC/OS-II application, stacks are declared as static arrays, and the address of either the top or bottom
(depending on the CPU) of the stack is passed to OSTaskCreate. In a Rabbit-based system, the
Dynamic C development environment provides a superior stack allocation mechanism that µC/OS-II
incorporates. Rather than declaring stacks as static arrays, the number of stacks of particular sizes are
declared, and when a task is created using either OSTaskCreate or OSTaskCreateExt, only the
size of the stack is passed, not the memory address. This mechanism allows a large number of stacks to be
defined without using up root RAM.
 Multitasking with Dynamic C rabbit.com 54

http://www.rabbit.com

There are five macros located in ucos2.lib that define the number of stacks needed of five different
sizes. To have three 256-byte stacks, one 512-byte stack, two 1024-byte stacks, one 2048-byte stack, and
no 4096-byte stacks, the following macro definitions would be used:

#define STACK_CNT_256 3 // number of 256 byte stacks
#define STACK_CNT_512 1 // number of 512 byte stacks
#define STACK_CNT_1K 2 // number of 1K stacks
#define STACK_CNT_2K 1 // number of 2K stacks
#define STACK_CNT_4K 0 // number of 4K stacks

These macros can be placed into each µC/OS-II application so that the number of each size stack can be
customized based on the needs of the application. Suppose that an application needs 5 tasks, and each task
has a consecutively larger stack. The macros and calls to OSTaskCreate would look as follows

#define STACK_CNT_256 3 // number of 256 byte stacks
#define STACK_CNT_512 1 // number of 512 byte stacks
#define STACK_CNT_1K 2 // number of 1K stacks
#define STACK_CNT_2K 1 // number of 2K stacks
#define STACK_CNT_4K 0 // number of 4K stacks

OSTaskCreate(task1, NULL, 256, 0);
OSTaskCreate(task2, NULL, 512, 1);
OSTaskCreate(task3, NULL, 1024, 2);
OSTaskCreate(task4, NULL, 2048, 3);
OSTaskCreate(task5, NULL, 4096, 4);

Note that STACK_CNT_256 is set to 2 instead of 1. µC/OS-II always creates an idle task which runs
when no other tasks are in the ready state. Note also that there are two 512 byte stacks instead of one. This
is because the program is given a 512 byte stack. If the application utilizes the µC/OS-II statistics task,
then the number of 512 byte stacks would have to be set to 3. (Statistic task creation can be enabled and
disabled via the macro OS_TASK_STAT_EN which is located in ucos2.lib). If only 6 stacks were
declared, one of the calls to OSTaskCreate would fail.

If an application uses OSTaskCreateExt, which enables stack checking and allows an extension of the
Task Control Block, fewer parameters are needed in the Rabbit version of µC/OS-II. Using the macros in
the example above, the tasks would be created as follows:

OSTaskCreateExt(task1, NULL, 0, 0, 256, NULL, OS_TASK_OPT_STK_CHK |
OS_TASK_OPT_STK_CLR);

OSTaskCreateExt(task2, NULL, 1, 1, 512, NULL, OS_TASK_OPT_STK_CHK |
OS_TASK_OPT_STK_CLR);

OSTaskCreateExt(task3, NULL, 2, 2, 1024, NULL, OS_TASK_OPT_STK_CHK |
OS_TASK_OPT_STK_CLR);

OSTaskCreateExt(task4, NULL, 3, 3, 2048, NULL, OS_TASK_OPT_STK_CHK |
OS_TASK_OPT_STK_CLR);

OSTaskCreateExt(task5, NULL, 4, 4, 4096, NULL, OS_TASK_OPT_STK_CHK |
OS_TASK_OPT_STK_CLR);
 Multitasking with Dynamic C rabbit.com 55

http://www.rabbit.com

5.10.1.3 Restrictions

At the time of this writing, µC/OS-II for Dynamic C is not compatible with the use of slice statements.
Also, see the function description for OSTimeTickHook() for important information about preserving
registers if that stub function is replaced by a user-defined function.

Due to Dynamic C's stack allocation scheme, special care should be used when posting messages to either
a mailbox or a queue. A message is simply a void pointer, allowing the application to determine its mean-
ing. Since tasks can have their stacks in different segments, auto pointers declared on the stack of the task
posting the message should not be used since the pointer may be invalid in another task with a different
stack segment.

5.10.2 Tasking Aware Interrupt Service Routines (TA-ISR)
Special care must be taken when writing an interrupt service routine (ISR) that will be used in conjunction
with µC/OS-II so that µC/OS-II scheduling will be performed at the proper time.

5.10.2.1 Interrupt Priority Levels

µC/OS-II for the Rabbit reserves interrupt priority levels 2 and 3 for interrupts outside of the kernel. Since
the kernel is unaware of interrupts above priority level 1, interrupt service routines for interrupts that occur
at interrupt priority levels 2 and 3 should not be written to be tasking aware. Also, a µC/OS-II application
should only disable interrupts by setting the interrupt priority level to 1, and should never raise the inter-
rupt priority level above 1.

5.10.2.2 Possible ISR Scenarios

There are several different scenarios that must be considered when writing an ISR for use with µC/OS-II.
Depending on the use of the ISR, it may or may not have to be written so that it is tasking aware. Consider
the scenario in Figure 5.7. In this situation, the ISR for Interrupt X does not have to be tasking aware since
it does not re-enable interrupts before completion and it does not post to a semaphore, mailbox, or queue.

Figure 5.7 Type 1 ISR
 Multitasking with Dynamic C rabbit.com 56

http://www.rabbit.com

If, however, an ISR needs to signal a task to the ready state, then the ISR must be tasking aware. In the
example in Figure 5.8, the TA-ISR increments the interrupt nesting counter, does the work necessary for
the ISR, readies a higher priority task, decrements the nesting count, and returns to the higher priority task.

Figure 5.8 Type 2 ISR

It may seem as though the ISR in Figure 5.8 does not have to increment and decrement the nesting count.
However, this is very important. If the ISR for Interrupt X is called during an ISR that re-enables interrupts
before completion, scheduling should not be performed when Interrupt X completes; scheduling should
instead be deferred until the least nested ISR completes. Figure 5.9 shows an example of this situation.

Figure 5.9 Type 2 ISR Nested Inside Type 3 ISR

As can be seen here, although the ISR for interrupt Z does not signal any tasks by posting to a semaphore,
mailbox, or queue, it must increment and decrement the interrupt nesting count since it re-enables inter-
rupts (ipres) prior to finishing all of its work.
 Multitasking with Dynamic C rabbit.com 57

http://www.rabbit.com

5.10.2.3 General Layout of a TA-ISR

A TA-ISR is just like a standard ISR except that it does some extra checking and house-keeping. The fol-
lowing table summarizes when to use a TA-ISR.

Table 5-2. Use of TA-ISR

µC/OS-II Application

Type 1a

a. Type 1—Leaves interrupts disabled and does not signal task to ready state

Type 2b

b. Type 2—Leaves interrupts disabled and signals task to ready state

Type 3c

c. Type 3—Reenables interrupts before completion

TA-ISR Required? No Yes Yes
 Multitasking with Dynamic C rabbit.com 58

http://www.rabbit.com

Figure 5.10 shows the logical flow of a TA-ISR.

Figure 5.10 Logical Flow of a TA-ISR

Save registers used by TA-ISR

Reenable interrupts (optional)

Do work necessary for interrupt

Decrement Nesting Count

Call OSIntExit

Clear interrupt source

Increment nesting count

Is Nesting == 0 ?

Restore Registers used by TA-ISR

Return from interrupt

Is switch pending ?

Switch to new task

Yes

Yes

No

No
 Multitasking with Dynamic C rabbit.com 59

http://www.rabbit.com

Sample Code for a TA-ISR

Fortunately, the Rabbit BIOS and libraries provide all of the necessary flags to make TA-ISRs work. With
the code found in Listing 1, minimal work is needed to make a TA-ISR function correctly with µC/OS-II.
TA-ISRs allow µC/OS-II the ability to have ISRs that communicate with tasks as well as the ability to let
ISRs nest, thereby reducing interrupt latency.

Just like a standard ISR, the first thing a TA-ISR does is to save the registers that it is going to use (1).
Once the registers are saved, the interrupt source is cleared (2) and the nesting counter is incremented (3).
Note that bios_intnesting is a global interrupt nesting counter provided in the Dynamic C libraries
specifically for tracking the interrupt nesting level. If an ipres instruction is executed (4) other interrupts
can occur before this ISR is completed, making it necessary for this ISR to be a TA-ISR.

If it is possible for the ISR to execute before µC/OS-II has been fully initialized and started multi-tasking,
a check should be made (5) to insure that µC/OS-II is in a known state, especially if the TA-ISR signals a
task to the ready state (6).

After the TA-ISR has done its necessary work (which may include making a higher priority task than is
currently running ready to run), OSIntExit must be called (7). This µC/OS-II function determines the
highest priority task ready to run, sets it as the currently running task, and sets the global flag
bios_swpend if a context switch needs to take place. Interrupts are disabled since a context switch is
treated as a critical section (8).

If the TA-ISR decrements the nesting counter and the count does not go to zero, then the nesting level is
saved in bios_intnesting (9), the registers used by the TA-ISR are restored, interrupts are re-
enabled (if not already done in (4)), and the TA-ISR returns (12). However, if decrementing the nesting
counter in (9) causes the counter to become zero, then bios_swpend must be checked to see if a context
switch needs to occur (10).

If a context switch is not pending, then the nesting level is set (9) and the TA-ISR exits (12). If a context
switch is pending, then the remaining context of the previous task is saved and a long call, which insures
that the xpc is saved and restored properly, is made to bios_intexit (11). bios_intexit is
responsible for switching to the stack of the task that is now ready to run and executing a long call to
switch to the new task. The remainder of (11) is executed when a previously preempted task is allowed to
run again.

Listing 1

#asm
taskaware_isr::

push af ;push regs needed by isr (1)
push hl ;clear interrupt source (2)
ld hl,bios_intnesting ;increase the nesting count (3)
inc (hl)
; ipres (optional) (4)
; do processing necessary for interrupt
ld a,(OSRunning) ;MCOS multitasking yet? (5)
or a
jr z,taisr_decnesting

; possibly signal task to become ready (6)
call OSIntExit ;sets bios_swpend if higher

; prio ready (7)
taisr_decnesting:
 Multitasking with Dynamic C rabbit.com 60

http://www.rabbit.com

push ip (8)
ipset 1

ld hl,bios_intnesting ; nesting counter == 1?
dec (hl) (9)
jr nz,taisr_noswitch

ld a,(bios_swpend) ; switch pending? (10)
or a
jr z,taisr_noswitch

push de (11)
push bc
ex af,af’
push af
exx
push hl
push de
push bc
push iy

lcall bios_intexit

pop iy
pop bc
pop de
pop hl
exx
pop af
ex af,af’
pop bc
pop de

taisr_noswitch:
pop ip

taisr_done:
pop hl (12)
pop af
ipres
ret

#endasm
 Multitasking with Dynamic C rabbit.com 61

http://www.rabbit.com

5.10.3 Library Reentrancy
When writing a µC/OS-II application, it is important to know which Dynamic C library functions are non-
reentrant. If a function is non-reentrant, then only one task may access the function at a time, and access to
the function should be controlled with a µC/OS-II semaphore. The following is a list of Dynamic C func-
tions that are non-reentrant.

The Dynamic C serial port functions (RS232.LIB functions) should be used in a restricted manner with
µC/OS-II. Two tasks can use the same port as long as both are not reading, or both are not writing; i.e., one
task can read from serial port X and another task can write to serial port X at the same time without con-
flict.

5.10.4 How to Get a µC/OS-II Application Running
µC/OS-II is a highly configureable, real-time operating system. It can be customized using as many or as
few of the operating system’s features as needed. This section outlines:

• The configuration constants used in µC/OS-II

• How to override the default configuration supplied in UCOS2.LIB

• The necessary steps to get an application running

It is assumed that the reader has a familiarity with µC/OS-II or has a µC/OS-II reference (MicroC/OS-II,
The Real-Time Kernel by Jean J. Labrosse is highly recommended).

Table 5-3. Dynamic C Non-Reentrant Functions

Library Non-Reentrant Functions

MATH.LIB randg, randb, rand

RS232.LIB All

RTCLOCK.LIB write_rtc, tm_wr

STDIO.LIB kbhit, getchar, gets, getswf, selectkey

STRING.LIB atofa, atoi1, strtok

a. reentrant but sets the global _xtoxErr flag

SYS.LIB
clockDoublerOn, clockDoublerOff,
useMainOsc, useClockDivider, use32kHzOsc

VDRIVER.LIB VdGetFreeWd, VdReleaseWd

XMEM.LIB WriteFlash

JRIO.LIB
digOut, digOn, digOff, jrioInit, anaIn,
anaOut, cof_anaIn

JR485.LIB All
 Multitasking with Dynamic C rabbit.com 62

http://www.rabbit.com

5.10.4.1 Default Configuration

µC/OS-II usually relies on the include file os_cfg.h to get values for the configuration constants. In the
Dynamic C implementation of µC/OS-II, these constants, along with their default values, are in
os_cfg.lib. A default stack configuration is also supplied in os_cfg.lib. µC/OS-II for the Rabbit
uses a more intelligent stack allocation scheme than other µC/OS-II implementations to take better advan-
tage of unused memory.

The default configuration allows up to 10 normally created application tasks running at 64 ticks per sec-
ond. Each task has a 512-byte stack. There are 2 queues specified, and 10 events. An event is a queue,
mailbox or semaphore. You can define any combination of these three for a total of 10. If you want more
than 2 queues, however, you must change the default value of OS_MAX_QS.

Some of the default configuration constants are:

OS_MAX_EVENTS Max number of events (semaphores, queues, mailboxes)
Default is 10

OS_MAX_TASKS Maximum number of tasks (less stat and idle tasks)
Default is 10

OS_MAX_QS Max number of queues in system
Default is 2

OS_MAX_MEM_PART Max number of memory partitions
Default is 1

OS_TASK_CREATE_EN Enable normal task creation
Default is 1

OS_TASK_CREATE_EXT_EN Disable extended task creation
Default is 0

OS_TASK_DEL_EN Disable task deletion
Default is 0

OS_TASK_STAT_EN Disable statistics task creation
Default is 0

OS_Q_EN Enable queue usage
Default is 1

OS_MEM_EN Disable memory manager
Default is 0

OS_MBOX_EN Enable mailboxes
Default is 1

OS_SEM_EN Enable semaphores
Default is 1

OS_TICKS_PER_SEC Number of ticks in one second
Default is 64

STACK_CNT_256 Number of 256 byte stacks (idle task stack)
Default is 1
 Multitasking with Dynamic C rabbit.com 63

http://www.rabbit.com

STACK_CNT_512 Number of 512-byte stacks
(task stacks + initial program stack)
Default is OS_MAX_TASKS+1 (11)

If a particular portion of µC/OS-II is disabled, the code for that portion will not be compiled, making the
overall size of the operating system smaller. Take advantage of this feature by customizing µC/OS-II based
on the needs of each application.

5.10.4.2 Custom Configuration

In order to customize µC/OS-II by enabling and disabling components of the operating system, simply
redefine the configuration constants as necessary for the application.

#define OS_MAX_EVENTS 2
#define OS_MAX_TASKS 20
#define OS_MAX_QS 1
#define OS_MAX_MEM_PART 15
#define OS_TASK_STAT_EN 1
#define OS_Q_EN 0
#define OS_MEM_EN 1
#define OS_MBOX_EN 0
#define OS_TICKS_PER_SEC 64

If a custom stack configuration is needed also, define the necessary macros for the counts of the different
stack sizes needed by the application.

#define STACK_CNT_256 1 // idle task stack
#define STACK_CNT_512 2 // initial program + stat task stack
#define STACK_CNT_1K 10 // task stacks
#define STACK_CNT_2K 10 // number of 2K stacks

In the application code, follow the µC/OS-II and stack configuration constants with a #use
“ucos2.lib” statement. This ensures that the definitions supplied outside of the library are used, rather
than the defaults in the library.

This configuration uses 20 tasks, two semaphores, up to 15 memory partitions that the memory manager
will control, and makes use of the statistics task. Note that the configuration constants for task creation,
task deletion, and semaphores are not defined, as the library defaults will suffice. Also note that ten of the
application tasks will each have a 1024 byte stack, ten will each have a 2048 byte stack, and an extra stack
is declared for the statistics task.

5.10.4.3 Examples

The following sample programs demonstrate the use of the default configuration supplied in UCOS2.LIB
and a custom configuration which overrides the defaults.

Example 1

In this application, ten tasks are created and one semaphore is created. Each task pends on the semaphore,
gets a random number, posts to the semaphore, displays its random number, and finally delays itself for
three seconds.

Looking at the code for this short application, there are several things to note. First, since µC/OS-II and
slice statements are mutually exclusive (both rely on the periodic interrupt for a “heartbeat”), #use
 Multitasking with Dynamic C rabbit.com 64

http://www.rabbit.com

“ucos2.lib” must be included in every µC/OS-II application (1). In order for each of the tasks to have
access to the random number generator semaphore, it is declared as a global variable (2). In most cases, all
mailboxes, queues, and semaphores will be declared with global scope. Next, OSInit() must be called
before any other µC/OS-II function to ensure that the operating system is properly initialized (3). Before
µC/OS-II can begin running, at least one application task must be created. In this application, all tasks are
created before the operating system begins running (4). It is perfectly acceptable for tasks to create other
tasks. Next, the semaphore each task uses is created (5). Once all of the initialization is done,
OSStart() is called to start µC/OS-II running (6). In the code that each of the tasks run, it is important
to note the variable declarations. Each task runs as an infinite loop and once this application is started,
µC/OS-II will run indefinitely.

// 1. Explicitly use µC/OS-II library
#use "ucos2.lib"

void RandomNumberTask(void *pdata);

// 2. Declare semaphore global so all tasks have access
OS_EVENT* RandomSem;

void main(){
int i;

// 3. Initialize OS internals
OSInit();

for(i = 0; i < OS_MAX_TASKS; i++)

// 4. Create each of the system tasks
OSTaskCreate(RandomNumberTask, NULL, 512, i);

// 5. semaphore to control access to random number generator
 RandomSem = OSSemCreate(1);

// 6. Begin multitasking
OSStart();

}

void RandomNumberTask(void *pdata)
{

OS_TCB data;
INT8U err;
INT16U RNum;

OSTaskQuery(OS_PRIO_SELF, &data);
while(1)
{

// Rand is not reentrant, so access must be controlled via a semaphore.
OSSemPend(RandomSem, 0, &err);
RNum = (int)(rand() * 100);
OSSemPost(RandomSem);
printf("Task%d's random #: %d\n",data.OSTCBPrio,RNum);

// Wait 3 seconds in order to view output from each task.
OSTimeDlySec(3);

}
}

 Multitasking with Dynamic C rabbit.com 65

http://www.rabbit.com

Example 2

This application runs exactly the same code as Example 1, except that each of the tasks are created with
1024-byte stacks. The main difference between the two is the configuration of µC/OS-II.

First, each configuration constant that differs from the library default is defined. The configuration in this
example differs from the default in that it allows only two events (the minimum needed when using only
one semaphore), 20 tasks, no queues, no mailboxes, and the system tick rate is set to 32 ticks per second
(1). Next, since this application uses tasks with 1024 byte stacks, it is necessary to define the configuration
constants differently than the library default (2). Notice that one 512 byte stack is declared. Every
Dynamic C program starts with an initial stack, and defining STACK_CNT_512 is crucial to ensure that
the application has a stack to use during initialization and before multi-tasking begins. Finally
ucos2.lib is explicitly used (3). This ensures that the definitions in (1 and 2) are used rather than the
library defaults. The last step in initialization is to set the number of ticks per second via
OSSetTicksPerSec (4). The rest is identical to example 1 and is explained in the previous section.

// 1. Define necessary configuration constants for uC/OS-II
#define OS_MAX_EVENTS 2
#define OS_MAX_TASKS 20
#define OS_MAX_QS 0
#define OS_Q_EN 0
#define OS_MBOX_EN 0
#define OS_TICKS_PER_SEC 32

// 2. Define necessary stack configuration constants
#define STACK_CNT_512 1 // initial program stack
#define STACK_CNT_1K OS_MAX_TASKS // task stacks

// 3. This ensures that the above definitions are used
#use "ucos2.lib"

void RandomNumberTask(void *pdata);

// Declare semaphore global so all tasks have access
OS_EVENT* RandomSem;

void main(){
int i;

// Initialize OS internals
OSInit();

for(i = 0; i < OS_MAX_TASKS; i++){

// Create each of the system tasks
OSTaskCreate(RandomNumberTask, NULL, 1024, i);

}
// semaphore to control access to random number generator
RandomSem = OSSemCreate(1);

// 4. Set number of system ticks per second
OSSetTicksPerSec(OS_TICKS_PER_SEC);

// Begin multi-tasking
OSStart();

}

 Multitasking with Dynamic C rabbit.com 66

http://www.rabbit.com

void RandomNumberTask(void *pdata)
{

// Declare as auto to ensure reentrancy.
auto OS_TCB data;
auto INT8U err;
auto INT16U RNum;

OSTaskQuery(OS_PRIO_SELF, &data);
while(1)
{

// Rand is not reentrant, so access must be controlled via a semaphore.
OSSemPend(RandomSem, 0, &err);
RNum = (int)(rand() * 100);
OSSemPost(RandomSem);

printf("Task%02d's random #: %d\n",data.OSTCBPrio,RNum);

// Wait 3 seconds in order to view output from each task.
OSTimeDlySec(3);

}
}

5.10.5 Compatibility with TCP/IP
The TCP/IP stack is reentrant and may be used with the µC/OS-II real-time kernel. The line

#use ucos2.lib

 must appear before the line

#use dcrtcp.lib

A call to OSInit() must be made before calling sock_init().

5.10.5.1 Stack Size

The TCP/IP stack requires a µC/OS-II task to have a minimum stack size of 2K. Recall that the number of
2K stacks is defined by STACK_CNT_2K. If there are problems with sending a packet, try increasing the
stack size to 4K.

5.10.5.2 Socket Locks

Each socket used in a µC/OS-II application program has an associated socket lock. Each socket lock uses
one semaphore of type OS_EVENT. Therefore, the macro MAX_OS_EVENTS must take into account each
of the socket locks, plus any events that the application program may be using (semaphores, queues, mail-
boxes, event flags, or mutexes).

Determining OS_MAX_EVENTS may get a little tricky, but it isn't too bad if you know what your program
is doing. Since MAX_SOCKET_LOCKS is defined as:

#define MAX_SOCKET_LOCKS (MAX_TCP_SOCKET_BUFFERS +
MAX_UDP_SOCKET_BUFFERS)

OS_MAX_EVENTS may be defined as:

#define OS_MAX_EVENTS MAX_TCP_SOCKET_BUFFERS +
MAX_UDP_SOCKET_BUFFERS + 2 + z
 Multitasking with Dynamic C rabbit.com 67

http://www.rabbit.com

The constant “2” is included for the two global locks used by TCP/IP, and “z” is the number of
OS_EVENTS (semaphores, queues, mailboxes, event flags, or mutexes) required by the program.

If either MAX_TCP_SOCKET_BUFFERS or MAX_UDP_SOCKET_BUFFERS is not defined by the
application program prior to the #use statements for ucos.lib and dcrtcp.lib, default values will
be assigned.

If MAX_TCP_SOCKET_BUFFERS is not defined in the application program, it will be defined as
MAX_SOCKETS. If, however, MAX_SOCKETS is not defined in the application program,
MAX_TCP_SOCKET_BUFFERS will be 4.

If MAX_UDP_SOCKET_BUFFERS is not defined in the application program, it will be defined as 1 if
USE_DHCP is defined, or 0 otherwise.

For more information about TCP/IP, please see the Dynamic C TCP/IP User’s Manual, Volumes 1 and 2,
available online at www.rabbit.com.

5.10.6 Debugging Tips
Single stepping may be limited to the currently running task by using the F8 key (Step over). If the task is
suspended, single stepping will also be suspended. When the task is put back in a running state, single
stepping will continue at the statement following the statement that suspended execution of the task.

Pressing the F7 key (Trace into) at a statement that suspends execution of the current task will cause the
program to step into the next active task that has debug information. It may be useful to put a watch on the
global variable OSPrioCur to see which task is currently running.

For example, if the current task is going to call OSSemPend() on a semaphore that is not in the signaled
state, the task will be suspended and other tasks will run. If F8 is pressed at the statement that calls
OSSemPend(), the debugger will not single step in the other running tasks that have debug information;
single stepping will continue at the statement following the call to OSSemPend(). If F7 is pressed at the
statement that calls OSSemPend() instead of F8, the debugger will single step in the next task with
debug information that is put into the running state.

5.11 Summary
Although multitasking may actually decrease processor throughput slightly, it is an important concept. A
controller is often connected to more than one external device. A multitasking approach makes it possible
to write a program controlling multiple devices without having to think about all the devices at the same
time. In other words, multitasking is an easier way to think about the system.
 Multitasking with Dynamic C rabbit.com 68

http://www.rabbit.com
http://www.rabbitsemiconductor.com/products/dc/docs.shtml

 6. DEBUGGING WITH DYNAMIC C
This chapter is intended for anyone debugging Dynamic C programs. For the person with little to no expe-
rience, we offer general debugging strategies in Section 6.4. Both experienced and inexperienced Dynamic
C users can refer to Section 6.2 to see the full set of tools, programs and functions available for debugging
Dynamic C programs. Section 6.3 consolidates the information found in the GUI chapter regarding debug-
ging features into an quicker-to-read table of GUI options. And lastly, Section 6.5 gives some good refer-
ences for further study.

Dynamic C comes with robust capabilities to make debugging faster and easier. The debugger is highly
configurable; it is easy to enable or disable the debugger features using the Project Options dialog.

6.1 Debugging Features of Dynamic C
The following Dynamic C debugging features are summarized here, with links given to more detailed
descriptions.

• printf() - Display messages to the Stdio window (default) or redirect to a serial port. May also write to a
file.

• Software Breakpoints - Stop execution, allow the available debug windows to be examined: Stack,
Assembly, Dump and Register windows are always available.

• Hardware Breakpoints - The Run menu item “Add/Edit Hardware Breakpoints” lets you set up to six
hardware breakpoints on instruction fetches, data reads, and data writes. Note that a hardware break-
point is not the same as a hard breakpoint. (Support for hardware breakpoints was added in Dynamic C
10.21.)

• Single Stepping - Execute one C statement or one assembly statement. This is an extension of break-
points, so again, the Stack, Assembly, Dump and Register windows are always available.

• Watch Expressions - Keep running track of any valid C expression in the application. Fly-over hints
evaluate any watchable statement.

• Memory Dump - Displays blocks of raw values and their ASCII representation at any memory location
(can also be sent to a file).

• MAP File - Shows a global view of the program: memory usage, mapping of functions, global/static
data, parameters and local auto variables, macro listing and a function call graph.

• Assert Macro - This is a preventative measure, a kind of defensive programming that can be used to
check assumptions before they are used in the code.

• Blinking Lights - LEDs can be toggled to indicate a variety of conditions. This requires a signal line
connected to an LED on the board.

• Symbolic Stack Trace - Helps customers find out the path of the program at each single step or break
point. By looking through the stack, it is possible to reconstruct the path and allow the customer to eas-
ily move backwards in the current call tree to get a better feeling for the current debugging context.
Dynamic C User’s Manual rabbit.com 69

http://www.rabbit.com

• Persistent Breakpoints - Persistent breakpoints mean the information is retained when transitioning
back and forth from edit mode to debug mode and when a file is closed and re-opened.

• Enhanced Watch Expressions - The Watches window is now a tree structure capable of showing struct
members. That is, all members of a structure become viewable as watch expressions when a structure is
added, without having to add them each separately.

• Enhanced Memory Dumps - Changed data in the Memory Dump window is highlighted in reverse
video or in customizable colors every time you single step in either C or assembly.

• Enhanced Mode Switching - Debug mode can be entered without a recompile and download. If the con-
tents of the debugged program are edited, Dynamic C prompts for a recompile.

• Enhanced Stdio Window - The Stdio window is directly searchable.
Dynamic C User’s Manual rabbit.com 70

http://www.rabbit.com

6.2 Debugging Tools
This section describes the different tools available for debugging, including their pros and cons, as well as
when you might want to use them, how to use them and an example of using them. The examples are sug-
gestions and are not meant to be restrictive. While there may be some collaboration, bug hunting is largely
a solitary sport, with different people using different tools and methods to solve the same problem.

6.2.1 printf()
The printf() function has always been available in Dynamic C, with output going to the Stdio window
by default, and optionally to a file (by configuring the Stdio window contents to log to a file). There is also
the ability to redirect output to any one of the available serial ports A, B, C, D, E or F. See
Samples\stdio_serial.c for instructions on how to use the serial port redirect. This feature is
intended for debug purposes only.

The syntax for printf() is explained in detail in the Dynamic C Function Reference Manual, including
a listing of allowable conversion characters.

Pros A printf() statement is quick, easy and sometimes all that is needed to nail
down a problem.

You can use #ifdef directives to create levels of debugging information that can
be conditionally compiled using macro definitions. This is a technique used by Rab-
bit engineers when developing Dynamic C libraries. In the library code you will see
statements such as:

#ifdef LIBNAME_DEBUG
printf(“Insert information here.\n”);
...

#endif
...
#ifdef LIBNAME_VERBOSE

printf(“Insert more information.\n”);
...
#endif

By defining the above mentioned macro(s) you include the corresponding printf
statements.

Cons The printf() function is so easy to use, it is easy to overuse. This can lead to a
shortage of root memory. A solution to this that allows you to still have lots of printf
strings is to place the strings in extended memory (xmem) using the keyword
xdata and then call printf() with the conversion character “%ls.” An overuse
of printf statements can also affect execution time.

Uses Use to check a program’s flow without stopping its execution.
Dynamic C User’s Manual rabbit.com 71

http://www.rabbit.com

Example There are numerous examples of using printf() in the programs provided in the
Samples folder where you installed Dynamic C.

To display a string to the Stdio window place the following line of code in your ap-
plication:

printf("Entering my_function().\n");

To do the same thing, but without using root memory:

xdata entering {“Entering my_function().”};
...
printf("%ls\n", entering);

6.2.2 ANSI Escape Sequences
Dynamic C's STDIO window supports the following small subset of the so-called "ANSI Escape
Sequences" as described originally in the ANSI X3.64 standard (withdrawn), ISO/IEC 6429 and ECMA-
48 (fourth edition):

ESC [n A Cursor up n lines.

ESC [n B Cursor down n lines.

ESC [n C Cursor forward n columns.

ESC [n D Cursor backward n columns.

ESC [y ; x H Move cursor to row y, column x. Values start at 1.

ESC [2 J Clear the entire screen & move to home position (n=2).

ESC [K Clear to end of line.

ESC [n m Reset attributes (n=0) or set attribute n.

0 = reset Colors: 0 = black

7 = reverse (white on black) 1 = red

8 = concealed (white on white) 2 = green

30 + Color = foreground color 3 = yellow

40 + Color = background color 4 = blue

5 = magenta

6 = cyan

7 = white

9 = reset

Note: A semicolon-separated attributes list is supported (e.g. ESC [n1 ; n2 ; … m).

ESC [s Save cursor position.

ESC [u Restore cursor position.

For a colorful example of using ANSI escape sequences in Dynamic C's STDIO window, please
run the Samples\enum.c standard sample program.
Dynamic C User’s Manual rabbit.com 72

http://www.rabbit.com

6.2.3 Software Breakpoints
Software breakpoints are versatile. There is the ability to set breakpoints in ISRs, the existence of persis-
tent breakpoints and the ability to set breakpoints in edit mode. There is also a “Clear All Breakpoints”
command. Dynamic C 10.21 changes the keyboard shortcut for clearing all software breakpoints from
Ctrl+A to Ctrl+B.

Pros Software breakpoints can be set on any C statement unless it is marked “nodebug”
and in any “#asm debug” assembly block. This includes code in library files. Break-
points let you run a program at full speed until the specified stopping point is
reached. You can set multiple breakpoints in a program or even on the same line.
They are easy to toggle on and off individually and can all be cleared with one com-
mand. You can choose whether to leave interrupts turned on (soft breakpoint) or not
(hard breakpoint).

When stopped at a breakpoint, you can examine up-to-date contents in debug win-
dows and choose other debugging features to employ, such as single stepping,
dumping memory, fly-over watch expressions.

Cons To support large sector flash, breakpoint internals require that breakpoint overhead
remain, even when the breakpoint has been toggled off. Recompile the program to
remove this overhead.

When the debug keyword is added to an assembly block, relative jumps (which are
limited to 128 bytes) may go out of range. If this happens, change the JR instruction
to a JP instruction. Another solution is to embed a null C statement in the assembly
code like so:

#asm
...
c ; // Set a breakpoint on the semicolon
...
#endasm

Uses Use software breakpoints when you need to stop at a specified location to begin sin-
gle stepping or to examine variables, memory locations or register values.

Example Open Samples\Demo1.c. Press F5 to compile the program, then place the cur-
sor on the word “for” and press F2 to insert a breakpoint. Now press F9. Every time
you press F9 program execution will stop when it hits the start of the for loop. From
here you can single step or look at a variety of information through debug windows.

For example, say there is a problem when you get to the limit of a for loop. You
can use the “Evaluate Expressions” dialog to set the looping variable to a value that
brings program execution to the exact spot that you want, as shown in this screen-
shot:
Dynamic C User’s Manual rabbit.com 73

http://www.rabbit.com

Figure 6.1 Altering the Looping Variable when Stopped at a Breakpoint

6.2.4 Hardware Breakpoints
The Rabbit processor has seven hardware breakpoints. Dynamic C 10.21 introduced support for this pro-
cessor feature. One of the seven hardware breakpoints is used by the debug kernel. The remaining six
hardware breakpoints may be configured by selecting the “Add | Edit Hardware Breakpoints” item from
the Run menu.

Pros Hardware breakpoints can be set on any instruction fetch or any data read or write,
this includes code marked as “nodebug”. You can set multiple breakpoints in a pro-
gram.

When stopped at a breakpoint, you can examine up-to-date contents in debug win-
dows and choose other debugging features to employ, such as single stepping,
dumping memory, and fly-over watch expressions.

Cons Hardware breakpoints are more time-consuming to configure than software break-
points. You must know the address where you wish to stop and also whether the ac-
cess is for data or code.

Uses Allows greater access to “nodebug” Dynamic C library code during program exe-
cution. Offers increased knowledge when tracking hard to debug memory corrup-
tion errors.

The “Mask” text box in the “Add/Edit Hardware breakpoints” dialog lets you spec-
ify “don’t care” digits in the address, thus using a single breakpoint address to set a
range of addresses that will trigger the breakpoint.

Example The debug windows make configuring a hardware breakpoint straightforward. For
instance, the Assembly window lists an address for each instruction, so breaking on
an instruction fetch is just a matter of finding the instruction in the Assembly win-
dow and typing its address into the hardware breakpoint dialog box, as shown in the
screen shot below of Demo1.c.
Dynamic C User’s Manual rabbit.com 74

http://www.rabbit.com

Table 6-1. Samples\Demo1.c

Hardware breakpoints cause the processor to stop at the address logically after the
break address specified, thus “Hardware Breakpoint 1” is set for 000:e83e, but
program execution stopped at 000:e840. The PC was incremented twice for the 2-
byte opcode of the “ld” instruction. For an instruction fetch breakpoint, the proces-
sor will stop after executing the instruction at the breakpoint address.

In addition to debug windows, the MAP File can be used to find out addresses for
code and data. The map file is a rich source of memory mapping information, listing
everything from local variables to the origin and size of code and data segments.

Setting a hardware breakpoint on some internal I/O addresses can lead to a target
communication error. Since setting a breakpoint mask to 0xffffff will include all in-
ternal I/O address, the address and mask should be set to include only the intended
range of addresses.

Starting with Dynamic C 10.54, hardware breakpoints are disabled when code is ex-
ecuting within the debug kernel.
Dynamic C User’s Manual rabbit.com 75

http://www.rabbit.com

6.2.5 Single Stepping
Single stepping can be a very useful debugging technique.

Pros Single stepping allows you to closely supervise program execution at the source
code level, either by C statement or assembly statement. This helps in tracing the
logic of the program. You can single step any debuggable statement. Even Dynamic
C library functions can be stepped into as long as they are not flagged as nodebug.

Cons Single stepping is of limited use if interaction with an external device is being ex-
amined; an external device does not stop whatever it is doing just because the exe-
cution of the application has been restrained.

Also, single stepping can be very tedious if stepping through many instructions.
Well-placed breakpoints might serve you better.

Uses Single stepping is typically used when you have isolated the problem and have
stopped at the area of interest using a breakpoint.

Example

To single step through a program instead of running at full execution speed, com-
pile the program without running it.

To compile the program without running it, use the Compile menu option, the key-
board shortcut F5 or the toolbar menu button (pictured to the left of the Compile
menu option).

F7, F8, Alt+F7 and Alt+F8 are the keyboard shortcuts for stepping through code.
Use F7 if you want to step at the C statement level, but want to step into calls to
debuggable functions. Use F8 instead if you want to step over function calls.

If the Assembly window is open, the stepping will be done by assembly instruction
instead of by C statement if the feature “Enable instruction level single stepping” is
checked on the Debugger tab of the Project Options dialog; otherwise, stepping is
done by C statement regardless of the status of the Assembly window. If you have
checked “Enable instruction level single stepping” but wish to continue to step by
C statement when the Assembly window is open, use Alt+F7 or Alt+F8 instead of
F7 or F8.
Dynamic C User’s Manual rabbit.com 76

http://www.rabbit.com

6.2.6 Watch Expressions
The watch expressions feature applies to any valid C expression. It is possible to evaluate watchable
expressions using flyover hints. (The highlighted expression does not need to be set as a watch expression
for evaluation in a flyover hint.) When a structure is set as a watch expression, all of its memebers are set
automatically as watch expressions.

Pros Any valid C expression can be watched. Multiple expressions can be watched si-
multaneously. Once a watch is set on an expression, its value is updated in the
Watches window whenever program execution is stopped.

The Watches window may be updated while the program is running (which will af-
fect timing) by issuing the “Update Watch Window” command: use the Inspect
menu, Ctrl+U or the toolbar menu button shown here to update the Watches win-
dow.

You can use flyover hints to find out the value of any highlighted C expression
when the program is stopped.

Cons The scope of variables in watch expressions affects the value that is displayed in the
Watches window. If the variable goes out of scope, its true value will not be dis-
played until it comes back into scope.

Keep in mind two additional things, which are not bad per se, but could be if they
are used carelessly: Assignment statements in a watch expression will change the
value of a variable every time watches are evaluated. Similarly, when a function call
is in a watch expression, the function will run every time watches are evaluated.

Uses Use a watch expression when the value of the expression is important to the behav-
ior of the part of the program you are analyzing.

Example Watch expressions can be used to evaluate complicated conditionals. A quick way
to see this is to run the program Samples\pong.c. Set a breakpoint at this line

if (nx <= xl || nx >= xh)

within the function pong(). While the program is stopped, highlight the section
of the expression you want evaluated. Use the watches flyover hint by hovering
the cursor over the highlighted expression. It will be evaluated and the result dis-
played. You can see the values of, e.g., nx or x1 or the result of the conditional
expression nx <= x1, depending on what you highlight.

Keep in mind that when single stepping in assembly, the value of the watch expres-
sion may not be valid for variables located on the stack (all auto variables). This is
because the debug kernel does not keep track of the pushes and pops that occur on
the stack, and since watches of stack variables only make sense in the context of the
pushes and pops that have happened, they will not always be accurate when assem-
bly code is being single stepped.
Dynamic C User’s Manual rabbit.com 77

http://www.rabbit.com

6.2.7 Evaluate Expressions
The evaluate expression functionality is a special case of a watch expression evaluation in that the evalua-
tion takes place once, when the Evaluate button is clicked, not every time the Watches window is updated.

Pros Like watches, you can use the Evaluate Expression feature on any valid C expres-
sion. Multiple Evaluate Expression dialogs can be opened simultaneously.

Cons Can alter program data adversely if the change being made is not thought out prop-
erly

Uses This feature can be used to quickly and easily explore a variant of program flow.

Example Say you have an application that is supposed to treat the 100th iteration of a loop as
a special case, but it does not. You do not want to set a breakpoint on the looping
statement and hit F9 that many times, so instead you force the loop variable to equal
99 using the evaluate expression dialog. To do this compile the program without
running it. Set a breakpoint at the start of the loop and then single step to get past
the loop variable initialization. Open the Inspect menu and choose Evaluate Expres-
sion. Type in “j=99” and click on the Evaluate button. Now you are ready to start
examining the program’s behavior.

6.2.8 Memory Dump
The Dump window is a versatile tool. For example, multiple dump windows can be active simultaneously,
flyover hints make it easier to see the correct address, and three different types of dumps are allowed. Read
the section titled, “Debugging Tools” for more information on these topics. Another useful feature of the
Dump window is that values that have changed are shown highlighted in reverse video or in customizable
colors.

Pros Dump windows allow access to any memory location, beginning at any address.
There are alignment options; the data can be viewed as bytes, words or double-
words using a right-click menu.

Cons The Dump window does not contain symbolic information, which makes some in-
formation harder to decipher. There is the potential for increased debugging over-
head if you open multiple dump windows and make them large.

Uses Use a dump window when you suspect memory is being corrupted or to watch
string or numerical data manipulation proceed. String manipulation can easily cause
memory corruption if you are not careful.

Example Consider the following code:

char my_array[10];
for (i=0; i<=10; i++){

my_array[i] = 0xff;
}

If you do not have run-time checking of array indices enabled, this code will cor-
rupt whatever is immediately following my_array in memory.
Dynamic C User’s Manual rabbit.com 78

http://www.rabbit.com

There is no run-time checking for string manipulation, so if you wrote something
like the following in your application, memory would be corrupted when the null
terminator for the string “1234” was written.

void foo () {
int x;
char str[4];
x = 0xffff;
strcpy(str,”1234”);

}

Watching changes in a dump window will make the mistake more obvious in both
of these situations, though in the former, turning on run-time checking for array in-
dices in the Compiler tab of the Project Options dialog is easier.

6.2.9 MAP File
Map files are always generated for compiled programs.

Pros The map file is full of useful information. It contains:

• location and size of code and data segments

• a list of all symbols used, their location, size and file of origin

• a list of all macros used, their file of origin and the line number within that file
where the macro is defined

• function call graph

A valid map file is produced after a successful compile, so it is available when a
program crashes.

Cons If the compile was not successful, for example you get a message that says you ran
out of root code space, the map file will still be created, but will contain incomplete
and possibly incorrect information.

Uses Map files are useful when you want to gather more data or are trying to get a com-
prehensive overview of the program. A map file can help you make better use of
memory in cases where you are running short or are experiencing stack overflow
problems.

Example Say you are pushing the limits of memory in your application and want to see where
you can shave bytes. The map file contains sizes for all the data used in your pro-
gram. The screen shot below shows some code and part of its map file. Maybe you
meant to type “200” as the size for my_array and added a zero on the end by mis-
take. (This is a good place to mention that using hard-coded values is more prone to
error than defining and using constants.)
Dynamic C User’s Manual rabbit.com 79

http://www.rabbit.com

Scanning the size column, the mistake jumps out at you more readily than looking
at the code, maybe because you expect to see “200” and so your brain filters out
the extra zero. For whatever reason, looking at the same information in a different
format allows you to see more.

The size value for functions might not be accurate because it measures code dis-
tance. In other words, if a function spans a gap created with a follows action, the size
reported for the function will be much greater than the actual number of bytes added
to the program. The follows action is an advanced topic related to the subject of or-
igin directives. See the Rabbit 4000 Designer’s Handbook for a discussion of origin
directives and action qualifiers.

The map file provides the logical and physical addresses of the program and its data.
The screen shot below shows a small section of demo1.map. The left-most col-
umn shows line numbers, with addresses to their immediate right. Using the ad-
dresses we can reproduce the actions taken by the Memory Management Unit
(MMU) of the Rabbit. Addresses with four digits are both the logical and the phys-
ical address. That is because in the logical address space they are in the base seg-
ment, which always starts at zero in the physical address space. You can see this for
yourself by opening two dump windows: one with a four-digit logical address and
the second with that same four-digit number but with a leading zero, making it a
physical address. The contents of the dump windows will be the same.
Dynamic C User’s Manual rabbit.com 80

http://www.rabbit.com

The addresses in the format xx:yyyy are physical addresses. For code xx is the
XPC value, for data it is the value of DATASEG; yyyy is the PC value for both
code and data. In the above map file you can see examples of both code and data
addresses. Addresses in the format xx:yyyy are transformed by the MMU into 5-
digit physical addresses.

We will use the address fa:e64c to explain the actions of the MMU. It is really very
simple if you can do hex arithmetic in your head or have a decent calculator. The
MMU takes the XPC or DATASEG value, appends three zeros to it, then adds it to
the PC value, like so:

fa000 + e64c = 10864c

A sixth digit in the result is ignored, leaving us with the value 0x0864c. This is the
physical address. Again, you can check this in a couple of dump windows by typ-
ing in the 5-digit physical address for one window and the XPC:offset into another
and seeing that the contents are the same.
Dynamic C User’s Manual rabbit.com 81

http://www.rabbit.com

6.2.10 Symbolic Stack Trace
Dynamic C has both a Stack window and a Stack Trace window. The Stack window lets you view the top
32 bytes of the stack. The Stack Trace window lets you see where you are and how you got there. It keeps
a running depth value, telling you how many bytes have been pushed on the stack in the current program
instance, or since the depth value reset button was clicked. The Stack Trace window only tracks stack-
based variables, i.e., auto variables. The storage class for local variables can be either auto or static, speci-
fied through a modifier when the variable is declared or globally via the #class directive. Whatever the
means, if a local variable is marked static it will not appear in the Stack Trace window.

Pros Provides a concise history of the call sequence and values of local variables and
function arguments that led to the current breakpoint, all for a very small cost in ex-
ecution time and BIOS memory.

Cons Currently, the Stack Trace window can not trace the parameters and local variables
in cofunctions. Also the contents of the window can not be saved after a program
crash.

Uses Use stack tracing to capture the call sequence leading to a breakpoint and to see the
values of functions arguments and local variables.

Example Say you have a function that is behaving badly. You can set a breakpoint in the func-
tion and use the Stack Trace window to examine the function call sequence. Exam-
ining the call sequence and the parameters being passed might give enough
information to solve the problem.

The following screenshot shows an instance of qsortdemo.c and the Stack
Trace window. Note that the call to memcpy() is not represented on the stack. The
reason is that its stack activity had completed and program execution had returned
to main() when the stack was traced at the breakpoint in the function mycmp().
Dynamic C User’s Manual rabbit.com 82

http://www.rabbit.com

6.2.11 Assert Macro
The Dynamic C implementation of assert follows the ANSI standard for the NDEBUG macro, but differs
in what the macro is defined to be so as to save code space (ANSI specifies that assert is defined as
((void)0) when NDEBUG is defined, but this generates a NOP in Dynamic C, so it is defined to be noth-
ing).

Pros The assert macro is self-checking software. It lets you explicitly state something is
true, and if it turns out to be false, the program terminates with an error message. At
the time of this writing, this link contained an excellent write-up on the assert mac-
ro:

http://www.embedded.com/story/OEG20010311S0021

Cons Side effects can occur if the assert macro is not coded properly, e.g.,

assert(i=1)

will never trigger the assert and will change the value of the variable i; it should be
coded as:

assert(i==1)

Uses Use the assert macro when you must make sure your assumption is accurate.

Example Check for a NULL pointer before using it.

void my_function (int * ptr){
assert(ptr);
...

}

6.2.12 Miscellaneous Debugging Tools
Noted here are a number of other debugging tools to consider.

General Debug Windows
In addition to the debug windows we have discussed already, there are three other windows that are avail-
able when a program is compiled: the Assembly, Register and Stack windows. They are described in detail
in Chapter 16 , in the sections titled, Assembly (F10), Register Window and Stack (F12), respectively.
Dynamic C User’s Manual rabbit.com 83

http://www.rabbit.com

xalloc_stats()
Prints a table of physical addresses that are available for allocation in xmem via xalloc() calls. To dis-
play this information in the Stdio window, execute the statement:

xalloc_stats(0);

in your application or use Inspect | Evaluate Expression. The Stdio window will display something similar
to the following:

A region is a contiguous piece of memory. Theoretically, up to four regions can exist; a region that is
marked “dummy” is a region that does not exist. Each region is identified as “normal” or “BB RAM,”
which refers to memory that is battery-backed.

SerialIO.exe
The utility serialIO.exe is located in \Diagnostics\Serial_IO. It is also in the file
SerialIO_1.zip, available for download at: www.rabbit.com/support/downloads/.

This utility is a specialized terminal emulator program and comes with several diagnostic programs. The
diagnostic programs test a variety of functionality, and allow the user to simulate some of the behavior of
the Dynamic C download process.

The utility has a Help button that gives complete instructions for its use. The Rabbit 4000 Designer’s
Handbook in the chapter titled “Troubleshooting Tips for New Rabbit-Based Systems” explains some of
the diagnostic programs that come with the serialIO utility. Understanding the information in this chapter
will allow you to write your own diagnostic programs for the serialIO utility.

reset_demo.c
The sample program Samples\reset_demo.c demonstrates using the functions that check the reason
for a reset: hard reset (power failure or pressing the reset button), soft reset (initiated by software), or a
watchdog timeout.

Error Logging
Chapter 9, “Run-Time Errors,” describes the exception handling routine for run-time errors that is supplied
with Dynamic C. The default handler may be replaced with a user-defined handler. Also error logging can
be enabled by setting ENABLE_ERROR_LOGGING to 1 in ERRLOGCONFIG.LIB. Error logging is no
longer supported as of Dynamic C 10.40.
Dynamic C User’s Manual rabbit.com 84

http://www.rabbit.com/support/downloads/
http://www.rabbit.com

Watchdogs
Ten virtual watchdogs are provided, in addition to the hardware watchdog(s) of the processor. Watchdogs,
whether hardware or software, limit the amount of time a system is in an unknown state.

Virtual watchdogs are maintained by the Virtual Driver and described in Section 7.4.2. The sample pro-
gram Samples\VDRIVER\VIRT_WD.C demonstrates the use of a virtual watchdog.

Compiler Options
The Compiler tab of the Project Options dialog contains several options that assist debugging. They are
summarized here and fully documented starting on page 276.

• List Files - When enabled, this option generates an assembly list file for each compile. The list file con-
tains the same information and is in the same format as the contents of the Assembly window. List files
can be very large.

• Run-Time Checking - Run-time checking of array indices and pointers are enabled by default. Run-time
pointer checking is no longer available as of Dynamic C 10.50.

• Type Checking - Compile-time checking of type options are enabled by default. There are three type
checking options, labeled as: Prototype, Demotion and Pointer. Checking prototypes means that argu-
ments passed in function calls are checked against the function prototype. Demotion checking means
that the automatic conversion of a type to a smaller or less complex type is noted. Pointer checking
refers to making sure pointers of different types being intermixed are cast properly.

See the section titled, “Type Checking” on page 277 for more information.

Blinking Lights
Debugging software by toggling LEDs on and off might seem like a strange way to approach the problem,
but there are a number of situations that might call for it. Maybe you just want to exercise the board hard-
ware. Or, let us say you need to see if a certain piece of code was executed, but the board is disconnected
from your computer and so you have no way of viewing printf output or using the other debugging tools.
Or, maybe timing is an issue and directly toggling an LED with a call to WrPortE() or
BitWrPortE() gives you the information you need without as much affect on timing.
Dynamic C User’s Manual rabbit.com 85

http://www.rabbit.com

6.3 Where to Look for Debugger Features
Debugger features are accessed from several different Dynamic C menus. The menu to look in depends on
whether you want to enable, configure, view or use the debugger feature. This section identifies the vari-
ous menus that deal with debugging. Table 6-2 summarizes the menus and debugging tools.

Table 6-2. Summary of Debug Tools and Menus

Name of Feature
Where Feature is
Configured

Where Feature is Enabled
Where Feature is

Toggleda

a. Keyboard shortcuts and toolbar menu buttons are shown along with their corresponding menu commands
in the dropdown menus.

Symbolic Stack
Trace

Environment Options,
Debug Windows tab

Project Options,
Debugger tab

Windows Menu

Software
Breakpoints

Project Options,
Debugger tab

Project Options,
Debugger tab

Run Menu

Hardware
Breakpoints

“Add | Edit Hardware
breakpoint” dialog

Run menu’s “Add/Edit
Hardware Breakpoints”
option

In “Add | Edit Hardware
breakpoint” dialog,
change check box, then
click “Update” button

Single Stepping No configuration options Always enabled Run Menu

Instruction Level
Single Stepping

No configuration options
Project Options,
Debugger tab

Run Menu

Watch Expressions

Environment Options,
Debug Windows tab
Project Options,
Debugger tab

Project Options,
Debugger tab

Inspect Menu

Evaluate
Expression

No configuration options
This feature is enabled when
Watch Expressions is enabled.

Inspect Menu

Map File No configuration options Always enabled
Automatically generated
for compiled programs

Memory Dump
Environment Options,
Debug Windows tab

Always enabled Inspect Menu

Disassemble Code
Environment Options,
Debug Windows tab

Always enabled Inspect Menu

Assert Macro Programatically Programatically Programatically

printf() Programatically Programatically Programatically

Stdio, Stack and
Register windows

Environment Options,
Debug Windows tab

Always enabled Windows Menu
Dynamic C User’s Manual rabbit.com 86

http://www.rabbit.com

6.3.1 Run and Inspect Menus
The Run and Inspect menus are covered in detail in Section 16.5 and Section 16.6, respectively. These
menus are where you can enable the use of several debugger features. The Run menu has options for tog-
gling breakpoints and for single stepping. The Inspect menu has options for manipulating watch expres-
sions, disassembling code and for dumping memory. For the most part, a debugger feature must be enabled
before it can be selected in the Run or Inspect menus (or by its keyboard shortcut or toolbar menu button).
Most debugger features are enabled by default in the Project Options dialog. The disassembled code and
memory dump options are the exception, as they are always available to a compiled program.

6.3.2 Options Menu
From the Options menu in Dynamic C you can select Environment Options, Project Options or Toolbars,
where you configure debug windows, enable debug tools or customize your toolbar buttons, respectively.

The Environment Options dialog has a tab labeled “Debug Windows.” There are a number of configura-
tion options available there. You can choose to have all or certain debug windows open automatically
when a program compiles. You can choose font and color schemes for any debug window. More important
than fonts and colors, you can configure most of the debug windows in ways specific to that window. For
example, for the Assembly window you can alter which information fields are visible. See the section
titled, “Debug Windows Tab” on page 266 for complete information on the specific options available for
each window.

The Project Options dialog has a tab labeled “Debugger.” This is where symbolic stack tracing, break-
points, watch expressions and instruction level single stepping are enabled. These debugging tools must be
enabled before they can be used. Some configuration options are also set on the Debugger tab. See the sec-
tion titled, “Debugger Tab” on page 282, for complete information on the configuration options available
on the Debugger tab.

The final menu selection on the Options menu is labeled, “Toolbars.” This is where you choose the tool-
bars and the menu buttons that appear on the control bar. See the section titled, “Toolbars” on page 288, for
instructions on customizing this area. Placing the menu buttons you use the most on the control bar is not
really a debugging tool, but may make the task easier by offering some convenience.

6.3.3 Window Menu
The Window menu is where you can toggle display of debug windows. See Section 16.8 for more informa-
tion. Another selection available from the Window menu is the Information window, which contains mem-
ory information and the status of the last compile. See “Information” on page 295 for full details.
Dynamic C User’s Manual rabbit.com 87

http://www.rabbit.com

6.4 Debug Strategies

Since bug-free code is a trade-off with time and money, we know that software has bugsi. This section dis-
cusses ways to minimize the occurrence of bugs and gives you some strategies for finding and eliminating
them when they do occur.

6.4.1 Good Programming Practices
There is a big difference between “buggy code” and code that runs with near flawless precision. The latter
program may have a bug, but it may be a relatively minor problem that only appears under abnormal cir-
cumstances. (This touches on the subject of testing, which are the actions taken specifically to find bugs, a
larger discussion that is beyond the scope of this chapter.) This section discusses some time-tested methods
that may improve your ability to write software with fewer bugs.

• The Design: The design is the solution to the problem that a program or function is supposed to solve.
At a high level, the design is independent of the language that will be used in the implementation. Many
questions must be asked and answered. What are the requirements, the boundaries, the special cases?
These things are all captured in a well thought out design document. The design, written down, not just
an idea floating in your head, should be rigorous, complete and detailed. There should be agreement
and sign-off on the design before any coding takes place. The design underlies the code—it must come
first. This is also the first part of creating full documentation.

• Documentation: Other documentation includes code comments and function description headers,
which are specially formatted comments. Function description headers allow functions from libraries
listed in lib.dir to be displayed in the Function Lookup option in Dynamic C’s Help menu (or by
using the keyboard shortcut Ctrl+H). See Section 4.10 for details on creating function description head-
ers for user-defined library functions.

Another way to comment code is by making the code self-documenting: Always choose descriptive
names for functions, variables and macros. The brain only has so much memory capacity, and there is
no need to waste it by requiring yourself to remember that cwl() is the function to call when you want
to check the water level in your fish tank; chk_h20_level(), for example, makes it easier to remember
the function’s purpose. Of course, you get very familiar with code while it is in development and so
your brain transforms the letters “cwl” quite easily to the words “check water level.” But years later
when some esoteric bug appears and you have to dig into old code, you might be glad you took the time
to type out some longer function names.

• Modular Code: If you have a function that checks the water level in the fish tank, don’t have the same
function check the temperature. Keep functions focused and as simple as possible.

i. For an account of what can happen when time and money constraints all but disappear, read “They Write
the Right Stuff” by Charles Fishman.
Dynamic C User’s Manual rabbit.com 88

http://www.fastcompany.com/online/06/writestuff.html
http://www.fastcompany.com/online/06/writestuff.html
http://www.rabbit.com

• Coding Standards: The use of coding standards increases maintainability, portability and re-use of

code. In Dynamic C libraries and sample programsi some of the standards are as follows:

• Macros names are capitalized with an underscore separating words, e.g., MY_MACRO.

• Function names start with a lowercase letter with an underscore or a capital letter separating words,
e.g., my_function() or myFunction().

• Use parenthesis. Do not assume everyone has memorized the rules of precedence. E.g.,

y = a * b << c; // this is legal
y = (a * b) << c; // but this is more clear

• Use consistent indenting. This increases readability of the code. Look in the Editor tab in the Envi-
ronment Options dialog to turn on a feature that makes this automatic.

• Use block comments (/*...*/) only for multiple line comments on the global level and line comments
(//) inside functions, unless you really need to insert a long, multiple line comment. The reason for
this is it is difficult to temporarily comment out sections of code using /*...*/ when debugging if the
section being commented out has block comments, since block comments are not nestable.

• Use Dynamic C code templates to minimize syntax errors and some typos. Look in the Code Tem-
plates tab in the Environment Options dialog to modify existing templates or create you own. Right
click in an editor window and select Insert Code Template from the popup menu. This will bring up
a scroll box containing all the available templates from which to choose.

• Syntax Highlighting: Many syntactic elements are visually enhanced with color or other text attributes
by default. These elements are user-configurable from the Syntax Colors tab of the Environment
Options dialog. This is more than mere lipstick. The visual representation of material can aid in or
detract from understanding it, especially when the material is complex.

• Revision Control System: If your company has a code revision control systems in place, use it. In
addition, when in development or testing stages, keep a known good copy of your program close at
hand. That is, a compiles-and-runs-without-crashing copy of your program. Then if you make changes,
improvements or whatever and then can’t compile, you can go back to the known good copy.

i. Older libraries may not adhere strictly to these standards.
Dynamic C User’s Manual rabbit.com 89

http://www.rabbit.com

6.4.2 Finding the Bug
When a program does not compile, or compiles, but when running behaves in unexpected ways, or perhaps
worse, runs and then crashes, what do you do?

Compilation failures are caused by syntax errors. The compiler will generate messages to help you fix the
problem. There may be a list of compiler error messages in the window that pops up. Fix the first one, then
recompile. The other compile errors may disappear if they were not true syntax errors, but just the com-
piler being confused from the first syntax error.

During development, verify code as you progress. Develop code one function at a time. Do not wait until
you are finished with your implementation before you attempt to compile and run it, unless it is a very
short application. After a program is compiled, other types of bugs have a chance to reveal themselves.
The rest of this section concentrates on how to find a bug.

6.4.2.1 Reproduce the Problem

Keep an open mind. It might not be a bug in the software: you might have a bad cable connection, or
something along those lines. Check and eliminate the easy things first. If you are reasonably sure that your
hardware is in good working order, then it is time to debug the software.

Some bugs are consistent and are easy to reproduce, which means it will be easier to gather the informa-
tion needed to solve the problem. Other bugs are more elusive. They might seem random, happening only
on Wednesdays, or some other seemingly bizarre behavior. There are a number of reasons why a bug may
be intermittent. Here are some common one:

• Memory corruption

• uninitialized or incorrectly initialized pointers

• buffer overflow

• Stack overflow/underflow

• ISR modifying but not saving infrequently used register

• Interrupt latency

• Other borderline timing issues

• EMI

One of the difficulties of debugging is that the source of a bug and its effect may not appear closely related
in the code. For example, if an array goes out of bounds and corrupts memory, it may not be a problem
until much later when the corrupted memory is accessed.

6.4.2.2 Minimize the Failure Scenario

After you can reproduce the bug, create the shortest program possible that demonstrates the problem.
Whatever the size of the code you are debugging, one way to minimize the failure scenario is a method
called “binary search.” Basically, comment out half the code (more or less) and see which half of the pro-
gram the bug is in. Repeat until the problem is isolated.
Dynamic C User’s Manual rabbit.com 90

http://www.rabbit.com

6.4.2.3 Other Things to Try

Get out of your cubicle. It is a well-known fact that there are times when simply walking over to a co-
worker and explaining your problem can result in a solution. Probably because it is a form of data gather-
ing. The more data you gather (up to a point), the more you know, and the more you know, the more your
chances of figuring out the problem increase.

Stay in your cubicle. Log on and get involved in one of the online communities. There is a great Yahoo E-
group dedicated to Rabbit and Dynamic C. Although Rabbit engineers will answer questions there, it is
mostly the members of this group that solve problems for each other. To join this group go to:

http://tech.groups.yahoo.com/group/rabbit-semi/

Another good online source of information and help is the Rabbit bulletin board. Go to:

www.rabbit.com/support/bb/

If you are having trouble figuring out what is happening, remember to analyze the bug under various con-
ditions. For example, run the program without the programming cable attached. Change the baud rate.
Change the processor speed. Do bug symptoms change? If they do, you have more clues.

6.5 Reference to Other Debugging Information
There are many good references available. Here are a few of them:

• Debugging Embedded Microprocessor Systems, Stuart Ball

• Writing Solid Code, by Steve Macquire

• Websites: google, search on debugging software

At the time of this writing the following links provided some good information:

http://www.embeddedstar.com/technicalpapers/content/d/embedded1494.html

“They Write the Right Stuff” by Charles Fishman

http://www.fastcompany.com/online/06/writestuff.html
Dynamic C User’s Manual rabbit.com 91

http://www.rabbit.com/support/bb/
http://www.embeddedstar.com/technicalpapers/content/d/embedded1494.html
http://www.fastcompany.com/online/06/writestuff.html
http://tech.groups.yahoo.com/group/rabbit-semi/
http://www.rabbit.com

 7. THE VIRTUAL DRIVER

Virtual Driver is the name given to some initialization services and a group of services performed by a
periodic interrupt. These services are:

Initialization Services

• Call _GLOBAL_INIT()

• Initialize the global timer variables

• Start the Virtual Driver periodic interrupt

Periodic Interrupt Services

• Decrement software (virtual) watchdog timers

• Hitting the hardware watchdog timer

• Increment the global timer variables

• Drive uC/OS-II preemptive multitasking

• Drive slice statement preemptive multitasking

7.1 Default Operation
The user should be aware that by default the Virtual Driver starts and runs in a Dynamic C program with-
out the user doing anything. This happens because before main() is called, a function called
premain() is called by the Rabbit kernel (BIOS) that actually calls main(). Before premain() calls
main(), it calls a function named VdInit() that performs the initialization services, including start-
ing the periodic interrupt. If the user were to disable the Virtual Driver by commenting out the call to
VdInit() in premain(), then none of the services performed by the periodic interrupt would be
available. Unless the Virtual Driver is incompatible with some very tight timing requirements of a program
and none of the services performed by the Virtual Driver are needed, it is recommended that the user not
disable it.

7.2 Calling _GLOBAL_INIT()
VdInit() calls the function chain _GLOBAL_INIT() which runs all #GLOBAL_INIT sections in a
program. _GLOBAL_INIT() also initializes all of the CoData structures needed by costatements and
cofunctions. If VdInit() is not called, users could still use costatements and cofunctions if the call to
VdInit() was replaced by a call to _GLOBAL_INIT(), but the DelaySec() and DelayMs()
functions often used with costatements and cofunctions in waitfor statements would not work because
those functions depend on timer variables which are maintained by the periodic interrupt.
Dynamic C User’s Manual rabbit.com 92

http://www.rabbit.com

7.3 Global Timer Variables
SEC_TIMER, MS_TIMER and TICK_TIMER are global variables defined as shared unsigned
long. These variables should never be changed by an application program. Among other things, the
TCP/IP stack depends on the validity of the timer variables.

On initialization, SEC_TIMER is synchronized with the real-time clock. The date and time can be
accessed more quickly by reading SEC_TIMER than by reading the real-time clock.

The periodic interrupt updates SEC_TIMER every second, MS_TIMER every millisecond, and
TICK_TIMER 1024 times per second (the frequency of the periodic interrupt). These variables are used
by the DelaySec, DelayMS and DelayTicks functions, but are also convenient for application pro-
grams to use for timing purposes.

7.3.1 Example: Timing Loop
The following sample shows the use of MS_TIMER to measure the execution time in microseconds of a
Dynamic C integer add. The work is done in a nodebug function so that debugging does not affect timing.

#define N 10000

main(){ timeit(); }

nodebug timeit(){
unsigned long int T0;
float T2,T1;
int x,y;
int i;

T0 = MS_TIMER;
for(i=0;i<N;i++) { }

// T1 gives empty loop time
T1=(MS_TIMER-T0);

T0 = MS_TIMER;
for(i=0;i<N;i++){ x+y;}

// T2 gives test code execution time
T2=(MS_TIMER-T0);

// subtract empty loop time and convert to time for single pass
T2=(T2-T1)/(float)N;

// multiply by 1000 to convert milliseconds to microseconds.
printf("time to execute test code = %f us\n",T2*1000.0);
}

 The Virtual Driver rabbit.com 93

http://www.rabbit.com

7.3.2 Example: Delay Loop
An important detail about MS_TIMER is that it overflows (“rolls over”) approximately every 49 days, 17
hours. This behavior causes the following delay loop code to fail:

/* THIS CODE WILL FAIL!! */
endtime = MS_TIMER + delay;
while (MS_TIMER < endtime) {

//do something
}

If “MS_TIMER + delay” overflows, this returns immediately. The correct way to code the delay loop so
that an overflow of MS_TIMER does not break it, is this:

endtime = MS_TIMER + delay;
while ((long)MS_TIMER - endtime < 0) {

//do something
}

The interval defined by the subtraction is always correct. This is true because the value of the interval is
based on the values of MS_TIMER and “endtime” relative to one another, so the actual value of these vari-
able does not matter.

One way to conceptualize why the second code snippet is always correct is to consider a number circle like
the one in Figure 7.1. In this example, delay=5. Notice that the value chosen for MS_TIMER will “roll
over” but that it is only when MS_TIMER equals or is greater than “endtime” that the while loop will eval-
uate to false.

Figure 7.1 delay=5

Another important point to consider is that the interval is cast to a signed number, which means that any
number with the high bit set is negative. This is necessary in order for the interval to be less than zero
when MS_TIMER is a large number.
 The Virtual Driver rabbit.com 94

http://www.rabbit.com

7.4 Watchdog Timers
Watchdog timers limit the amount of time your system will be in an unknown state.

7.4.1 Hardware Watchdog
The Rabbit CPU has two built-in hardware watchdog timers, called the watchdog timer (WDT) and the
secondary watchdog timer (SWDT). The Virtual Driver hits the watchdog timer (WDT) periodically. The
following code fragment could be used to disable this WDT:

#asm
ld a,0x51

ioi ld (WDTTR),a
ld a,0x54

ioi ld (WDTTR),a
#endasm

However, it is recommended that the watchdog not be disabled. The watchdog prevents the target from
entering an endless loop in software due to coding errors or hardware problems. If the Virtual Driver is not
used, the user code should periodically call hitwd().

When debugging a program, if the program is stopped at a breakpoint because the breakpoint was explic-
itly set, or because the user is single stepping, then the debug kernel hits the hardware watchdog periodi-
cally.

The secondary watchdog timer defaults to disabled. For more information on the hardware watchdogs,
please see the user’s manual for your Rabbit processor.

7.4.2 Virtual Watchdogs
There are 10 virtual WDTs available; they are maintained by the Virtual Driver. Virtual watchdogs, like the
hardware watchdog, limit the amount of time a system is in an unknown state. They also narrow down the
problem area to assist in debugging.

The function VdGetFreeWd(count) allocates and initializes a virtual watchdog. The return value of
this function is the ID of the virtual watchdog. If an attempt is made to allocate more than 10 virtual
WDTs, a fatal error occurs. In debug mode, this fatal error will cause the program to return with error code
250. The default run-time error behavior is to reset the board.

The ID returned by VdGetFreeWd() is used as the argument when calling VdHitWd(ID) to hit a vir-
tual watchdog or VdReleaseWd(ID) to deallocate it.

The Virtual Driver counts down watchdogs every 62.5 ms. If a virtual watchdog reaches 0, this is fatal
error code 247. Once a virtual watchdog is active, it should be reset periodically with a call to
VdHitWd(ID) to prevent this. If count = 2 for a particular WDT, then VdHitWd(ID) will need to be
called within 62.5 ms for that WDT. If count = 255, VdHitWd(ID) will need to be called within 15.94
seconds.

The Virtual Driver does not count down any virtual WDTs if the user is debugging with Dynamic C and
stopped at a breakpoint.

7.5 Preemptive Multitasking Drivers
A simple scheduler for Dynamic C’s preemptive slice statement is serviced by the Virtual Driver. The
scheduling for µC/OS-II, a more traditional full-featured real-time kernel, is also done by the Virtual
Driver.

These two scheduling methods are mutually exclusive—slicing and µC/OS-II must not be used in the same
program.
 The Virtual Driver rabbit.com 95

http://www.rabbit.com

 8. THE SLAVE PORT DRIVER

The Rabbit family of microprocessors has hardware for a slave port, allowing a master controller to read
and write certain internal registers on the Rabbit. The library, Slaveport.lib, implements a complete
master/slave protocol for the Rabbit slave port. Sample libraries, Master_serial.lib and
Sp_stream.lib provide serial port and stream-based communication handlers using the slave port pro-
tocol.

8.1 Slave Port Driver Protocol
Given the variety of embedded system implementations, the protocol for the slave port driver was
designed to make the software for the master controller as simple as possible. Each interaction between the
master and the slave is initiated by the master. The master has complete control over when data transfers
occur and can expect single, immediate responses from the slave.

8.1.1 Overview
1. Master writes to the command register after setting the address register and, optionally, the data reg-

ister. These registers are internal to the slave.

2. Slave reads the registers that were written by the master.

3. Slave writes to command response register after optionally setting the data register. This also causes
the SLAVEATTN line on the Rabbit slave to be pulled low.

4. Master reads response and data registers.

5. Master writes to the slave port status register to clear interrupt line from the slave.
Dynamic C User’s Manual rabbit.com 96

http://www.rabbit.com

8.1.2 Registers on the Slave
From the point of view of the master, the slave is an I/O device with four register addresses.

Accessing the same address (0, 1 or 2) uses two different registers, depending on whether the access was a
read or a write. In other words, when writing to address 0, the master accesses a different location than
when the it reads address 0.

The status port is a bit field showing which slave port registers have been updated. For the purposes of this
protocol. Only bit 3 needs to be examined. After sending a command, the master can check bit 3, which is
set when the slave writes to the response register. At this point the response and returned data are valid and
should be read before sending a new command. Performing a dummy write to the status register will clear
this bit, so that it can be set by the next response.

Table 8-1. The slave registers that are accessible by the master

Register
 Name

Internal
Address of

Register

Address of Register
From Master’s

Perspective
Register Use

SPD0R 0x20 0 Command and response register

SPD1R 0x21 1 Address register

SPD2R 0x22 2 Optional data register

SPSR

0x23 3

Slave port status register. In this protocol the only bit
used is for checking the command response register.
Bit 3 is set if the slave has written to SPD0R. It is
cleared when the master writes to SPSR, which also
deasserts the SLAVEATTN line.

Table 8-2. What Happens When the Master Accesses a Slave Register

Register
Address

Read Write

0
Gets command response from
slave

Sends command to slave, triggers
slave response

1
Not used Sets channel address to send

command to

2 Gets returned data from slave Sets data byte to send to slave

3
Gets slave port status (see
below)

Clears slave response bit (see
below)
 The Slave Port Driver rabbit.com 97

http://www.rabbit.com

Pin assignments for the Rabbit acting as a slave are as follows:

For more details and read/write signal timing see the microprocessor user’s manual for your Rabbit chip.

8.1.3 Polling and Interrupts
Both the slave and the master can use interrupt or polling for the slave. The parameter passed to
SPinit() determines which one is used. In interrupt mode, the developer can indicate whether the han-
dler functions for the channels are interruptible or non-interruptible.

8.1.4 Communication Channels
The Rabbit slave has 256 configurable channels available for communication. The developer must provide
a handler function for each channel that is used. Some basic handlers are available in the library
Slave_Port.lib. These handlers will be discussed later in this chapter.

When the slave port driver is initialized, a callback table of handler functions is set up. Handler functions
are added to the callback table by SPsetHandler().

Table 8-3. Pin Assignments for the Rabbit Acting as a Slave

Rabbit 4000 Pins

Rabbit 5000 Pins
Function

PA0-PA7 Slave port data bus, bidirectional

PB6 /SCS Slave Chip Select (active low to read/write slave port)

PE7 /SCS Alternate Slave Chip Select

PB2 /SWR Slave Write (assert for write cycle)

PB3 /SRD Slave Read (assert for read cycle)

PB4 SA0 low address bit for slave port registers

PB5 SA1 high address bit for slave registers

PB7 /SLVATTN asserted by slave when it responds to a command; cleared
by master write to status register
 The Slave Port Driver rabbit.com 98

http://www.rabbit.com

8.2 Functions
Slave_port.lib provides the following functions:.

SPinit

int SPinit (int mode);

DESCRIPTION

This function initializes the slave port driver. It sets up the callback tables for the different chan-
nels. The slave port driver can be run in either polling mode where SPtick() must be called
periodically, or in interrupt mode where an ISR is triggered every time the master sends a com-
mand. There are two version of interrupt mode. In the first, interrupts are reenabled while the han-
dler function is executing. In the other, the handler function will execute at the same interrupt
priority as the driver ISR.

PARAMETERS

mode 0: For polling
1: For interrupt driven (interruptible handler functions)
2: For interrupt driven (non-interruptible handler functions)

RETURN VALUE

1: Success
0: Failure

LIBRARY

SLAVE_PORT.LIB

SPinit()
SPsetHandler()
MyHandler()
SPtick()
SPclose()
 The Slave Port Driver rabbit.com 99

http://www.rabbit.com

SPsetHandler

int SPsetHandler (char address, int (*handler)(), void
*handler_params);

DESCRIPTION

This function sets up a handler function to process incoming commands from the master for a par-
ticular slave port address.

PARAMETERS

address The 8-bit slave port address of the channel that corresponds
to the handler function.

handler Pointer to the handler function. This function must have a
particular form, which is described by the function descrip-
tion for MyHandler() shown below. Setting this param-
eter to NULL unloads the current handler.

handler_params Pointer that will be saved and passed to the handler function
each time it is called. This allows the handler function to be
parameterized for multiple cases.

RETURN VALUE

1: Success, the handler was set.
0: Failure.

LIBRARY

SLAVE_PORT.LIB
 The Slave Port Driver rabbit.com 100

http://www.rabbit.com

MyHandler

int MyHandler (char command, char data_in, void *params);

DESCRIPTION

This function is a developer-supplied function and can have any valid Dynamic C name. Its pur-
pose is to handle incoming commands from a master to one of the 256 channels on the slave port.
A handler function must be supplied for every channel that is being used on the slave port.

PARAMETERS

command This is the received command byte.

data_in The optional data byte

params The optional parameters pointer.

RETURN VALUE

This function must return an integer. The low byte must contains the response code and the high
byte contains the returned data, if there is any.

LIBRARY

This is a developer-supplied function.

SPtick

void SPtick (void);

DESCRIPTION

This function must be called periodically when the slave port is used in polling mode.

LIBRARY

SLAVE_PORT.LIB
 The Slave Port Driver rabbit.com 101

http://www.rabbit.com

SPclose

void SPclose(void);

DESCRIPTION

This function disables the slave port driver and unloads the ISR if one was used.

LIBRARY

SLAVE_PORT.LIB
 The Slave Port Driver rabbit.com 102

http://www.rabbit.com

8.3 Examples
The rest of the chapter describes some useful handlers.

8.3.1 Status Handler
SPstatusHandler(), available in Slave_port.lib, is an example of a simple handler to report
the status of the slave. To set up the function as a handler on slave port address 12, do the following:

SPsetHandler (12, SPstatusHandler, &status_char);

Sending any command to this handler will cause it to respond with a 1 in the response register and the cur-
rent value of status_char in the data return register.

8.3.2 Serial Port Handler
Slave_port.lib contains handlers for all serial ports A, B, C and D on the slave.
Master_serial.lib contains code for a master using the slave’s serial port handler. This library
illustrates the general case of implementing the master side of the master/slave protocol.

 8.3.2.1 Commands to the Slave

Table 8-4. Commands that the master can send to the slave

Command Command Description

1
Transmit byte. Byte value is in data register. Slave responds with 1 if the
byte was processed or 0 if it was not.

2
Receive byte. Slave responds with 2 if has put a new received byte into
the data return register or 0 if there were no bytes to receive.

3
Combined transmit/receive. The response will also be a logical OR of the
two command responses.

4
Set baud factor, byte 1 (LSB). The actual baud rate is the baud factor
multiplied by 300.

5
Set baud factor, byte 2 (MSB). The actual baud rate is the baud factor
multiplied by 300.

6 Set port configuration bits

7 Open port

8 Close port

9
Get errors. Slave responds with 1 if the port is open and can return an
error bitfield. The error bits are the same as for the function
serAgetErrors() and are put in the data return register by the slave.

10, 11
Returns count of free bytes in the serial port write buffer. The two
commands return the LSB and the MSB of the count respectively. The
LSB(10) should be read first to latch the count.
 The Slave Port Driver rabbit.com 103

http://www.rabbit.com

 8.3.2.2 Slave Side of Protocol

To set up the serial port handler to connect serial port A to channel 5 , do the following:

SPsetHandler (5, SPserAhandler, NULL);

 8.3.2.3 Master Side of Protocol

The following functions are in Master_serial.lib. They are for a master using a serial port handler
on a slave.

12, 13
Returns count of free bytes in the serial port read buffer. The two
commands return the LSB and the MSB of the count respectively. The
LSB(12) should be read first to latch the count.

14, 15
Returns count of bytes currently in the serial port write buffer. The two
commands return the LSB and the MSB of the count respectively. The
LSB(14) should be read first to latch the count.

16, 17
Returns count of bytes currently in the serial port write buffer. The two
commands return the LSB and the MSB of the count respectively. The
LSB(16) should be read first to latch the count.

cof_MSgetc()
cof_MSputc()
cof_MSread()
cof_MSwrite()
MSclose()
MSgetc()
MSgetError()

MSopen()
MSputc()
MSrdFree()
MSsendCommand()
MSread()
MSwrFree()
MSwrite()

Table 8-4. Commands that the master can send to the slave

Command Command Description
 The Slave Port Driver rabbit.com 104

http://www.rabbit.com

cof_MSgetc

int cof_MSgetc(char address);

DESCRIPTION

Yields to other tasks until a byte is received from the serial port on the slave.

PARAMETERS

address Slave channel address of the serial handler.

RETURN VALUE

Value of the received character on success.
-1: Failure.

LIBRARY

MASTER_SERIAL.LIB

cof_MSputc

void cof_MSputc(char address, char ch);

DESCRIPTION

Sends a character to the serial port. Yields until character is sent.

PARAMETERS

address Slave channel address of serial handler.

ch Character to send.

RETURN VALUE

 0: Success, character was sent.
-1: Failure, character was not sent.

LIBRARY

MASTER_SERIAL.LIB
 The Slave Port Driver rabbit.com 105

http://www.rabbit.com

cof_MSread

int cof_MSread(char address, char *buffer, int length, unsigned long
timeout);

DESCRIPTION

Reads bytes from the serial port on the slave into the provided buffer. Waits until at least one char-
acter has been read. Returns after buffer is full, or timeout has expired between reading bytes.
Yields to other tasks while waiting for data.

PARAMETERS

address Slave channel address of serial handler.

buffer Buffer to store received bytes.

length Size of buffer.

timeout Time to wait between bytes before giving up on receiving anymore.

RETURN VALUE

>0: Bytes read.
-1: Failure.

LIBRARY

MASTER_SERIAL.LIB
 The Slave Port Driver rabbit.com 106

http://www.rabbit.com

cof_MSwrite

int cof_MSwrite(char address, char *data, int length);

DESCRIPTION

Transmits an array of bytes from the serial port on the slave. Yields to other tasks while waiting
for write buffer to clear.

PARAMETERS

address Slave channel address of serial handler.

data Array to be transmitted.

length Size of array.

RETURN VALUE

Number of bytes actually written or -1 if error.

LIBRARY

MASTER_SERIAL.LIB

MSclose

int MSclose(char address);

DESCRIPTION

Closes a serial port on the slave.

PARAMETERS

address Slave channel address of serial handler.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

MASTER_SERIAL.LIB
 The Slave Port Driver rabbit.com 107

http://www.rabbit.com

MSgetc

int MSgetc(char address);

DESCRIPTION

Receives a character from the serial port.

PARAMETERS

address Slave channel address of serial handler.

RETURN VALUE

Value of received character.
-1: No character available.

LIBRARY

MASTER_SERIAL.LIB

MSgetError

int MSgetError(char address);

DESCRIPTION

Gets bitfield with any current error from the specified serial port on the slave. Error codes are:

SER_PARITY_ERROR
SER_OVERRUN_ERROR

PARAMETERS

address Slave channel address of serial handler.

RETURN VALUE

Number of bytes free: Success.
-1: Failure.

LIBRARY

MASTER_SERIAL.LIB
 The Slave Port Driver rabbit.com 108

http://www.rabbit.com

MSinit

int MSinit(int io_bank);

DESCRIPTION

Sets up the connection to the slave.

PARAMETERS

io_bank The I/O bank and chip select pin number for the slave device. This is a num-
ber from 0 to 7 inclusive.

RETURN VALUE

1: Success.

LIBRARY

MASTER_SERIAL.LIB

MSopen

int MSopen(char address, unsigned long baud);

DESCRIPTION

Opens a serial port on the slave, given that there is a serial handler at the specified address on the
slave.

PARAMETERS

address Slave channel address of serial handler.

baud Baud rate for the serial port on the slave.

RETURN VALUE

1: Baud rate used matches the argument.
0: Different baud rate is being used.

-1: Slave port comm error occurred.

LIBRARY

MASTER_SERIAL.LIB
 The Slave Port Driver rabbit.com 109

http://www.rabbit.com

MSputc

int MSputc(char address, char ch);

DESCRIPTION

Transmits a single character through the serial port.

PARAMETERS

address Slave channel address of serial handler.

ch Character to send.

RETURN VALUE

1: Character sent.
0: Transmit buffer is full or locked.

LIBRARY

MASTER_SERIAL.LIB

MSrdFree

int MSrdFree(char address);

DESCRIPTION

Gets the number of bytes available in the specified serial port read buffer on the slave.

PARAMETERS

address Slave channel address of serial handler.

RETURN VALUE

Number of bytes free: Success.
-1: Failure.

LIBRARY

MASTER_SERIAL.LIB
 The Slave Port Driver rabbit.com 110

http://www.rabbit.com

MSsendCommand

int MSsendCommand(char address, char command, char data, char
*data_returned, unsigned long timeout);

DESCRIPTION

Sends a single command to the slave and gets a response. This function also serves as a general
example of how to implement the master side of the slave protocol.

PARAMETERS

address Slave channel address to send command to.

command Command to be sent to the slave (see Section 8.3.2.1).

data Data byte to be sent to the slave.

data_returned Address of variable to place data returned by the slave.

timeout Time to wait before giving up on slave response.

RETURN VALUE

³0: Response code.
-1: Timeout occured before response.
-2: Nothing at that address (response = 0xff).

LIBRARY

MASTER_SERIAL.LIB
 The Slave Port Driver rabbit.com 111

http://www.rabbit.com

MSread

int MSread(char address, char *buffer, int size, unsigned long
timeout);

DESCRIPTION

Receives bytes from the serial port on the slave.

PARAMETERS

address Slave channel address of serial handler.

buffer Array to put received data into.

size Size of array (max bytes to be read).

timeout Time to wait between characters before giving up on receiving any more.

RETURN VALUE

The number of bytes read into the buffer (behaves like serXread()).

LIBRARY

MASTER_SERIAL.LIB

MSwrFree

int MSwrFree(char address);

DESCRIPTION

Gets the number of bytes available in the specified serial port write buffer on the slave.

PARAMETERS

 address Slave channel address of serial handler.

RETURN VALUE

Number of bytes free: Success.
-1: Failure.

LIBRARY

MASTER_SERIAL.LIB
 The Slave Port Driver rabbit.com 112

http://www.rabbit.com

MSwrite

int MSwrite(char address, char *data, int length);

DESCRIPTION

Sends an array of bytes out the serial port on the slave (behaves like serXwrite()).

PARAMETERS

address Slave channel address of serial handler.

data Array of bytes to send.

length Size of array.

RETURN VALUE

Number of bytes actually sent.

LIBRARY

MASTER_SERIAL.LIB
 The Slave Port Driver rabbit.com 113

http://www.rabbit.com

 8.3.2.4 Sample Program for Master

This sample program, /Samples/SlavePort/master_demo.c, treats the slave like a serial port.

#use "master_serial.lib"
#define SP_CHANNEL 0x42

char* const test_str = "Hello There";

main(){
char buffer[100];
int read_length;

MSinit(0);

// comment this line out if talking to a stream handler
printf("open returned:0x%x\n", MSopen(SP_CHANNEL, 9600));

while(1)
{

costate
{

wfd{cof_MSwrite(SP_CHANNEL, test_str, strlen(test_str));}
wfd{cof_MSwrite(SP_CHANNEL, test_str, strlen(test_str));}

}
costate
{

wfd{ read_length = cof_MSread(SP_CHANNEL, buffer, 99, 10); }
if(read_length > 0)
{

buffer[read_length] = 0; //null terminator
printf("Read:%s\n", buffer);

}
else if(read_length < 0)
{

printf("Got read error: %d\n", read_length);
}
printf("wrfree = %d\n", MSwrFree(SP_CHANNEL));

}
}

}

 The Slave Port Driver rabbit.com 114

http://www.rabbit.com

8.3.3 Byte Stream Handler
The library, SP_STREAM.LIB, implements a byte stream over the slave port. If the master is a Rabbit,
the functions in MASTER_SERIAL.LIB can be used to access the stream as though it came from a serial
port on the slave.

 8.3.3.1 Slave Side of Stream Channel

To set up the function SPShandler() as the byte stream handler, do the following:

SPsetHandler (10, SPShandler, stream_ptr);

This function sets up the stream to use channel 10 on the slave.

A sample program in Section 8.3.3.2 shows how to set up and initialize the circular buffers. An internal
data structure, SPStream, keeps track of the buffers and a pointer to it is passed to SPsetHandler()
and some of the auxiliary functions that supports the byte stream handler. This is also shown in the sample
program.

Functions

These are the auxiliary functions that support the stream handler function, SPShandler().

cbuf_init

void cbuf_init(char *circularBuffer, int dataSize);

DESCRIPTION

This function initializes a circular buffer.

PARAMETERS

circularBuffer The circular buffer to initialize.

dataSize Size available to data. The size must be 9 bytes more than
the number of bytes needed for data. This is for internal
book-keeping.

LIBRARY

RS232.LIB

cbuf_init()
cof_SPSread()
cof_SPSwrite()
SPSinit()
SPSread()

SPSwrite()
SPSwrFree()
SPSrdFree()
SPSwrUsed()
 The Slave Port Driver rabbit.com 115

http://www.rabbit.com

cof_SPSread

int cof_SPSread(SPStream *stream, void *data, int length, unsigned
long tmout);

DESCRIPTION

Reads length bytes from the slave port input buffer or until tmout milliseconds transpires be-
tween bytes after the first byte is read. It will yield to other tasks while waiting for data. This func-
tion is non-reentrant.

PARAMETERS

stream Pointer to the stream state structure.

data Structure to read from slave port buffer.

length Number of bytes to read.

tmout Maximum wait in milliseconds for any byte from previous one.

RETURN VALUE

The number of bytes read from the buffer.

LIBRARY

SP_STREAM.LIB
 The Slave Port Driver rabbit.com 116

http://www.rabbit.com

cof_SPSwrite

int cof_SPSwrite(SPStream *stream, void *data, int length);

DESCRIPTION

Transmits length bytes to slave port output buffer.This function is non-reentrant.

PARAMETERS

stream Pointer to the stream state structure.

data Structure to write to slave port buffer.

length Number of bytes to write.

RETURN VALUE

The number of bytes successfully written to slave port.

LIBRARY

SP_STREAM.LIB

SPSinit

void SPSinit(void);

DESCRIPTION

Initializes the circular buffers used by the stream handler.

LIBRARY

SP_STREAM.LIB
 The Slave Port Driver rabbit.com 117

http://www.rabbit.com

SPSread

int SPSread(SPStream *stream, void *data, int length, unsigned long
tmout);

DESCRIPTION

Reads length bytes from the slave port input buffer or until tmout milliseconds transpires be-
tween bytes. If no data is available when this function is called, it will return immediately. This
function will call SPtick() if the slave port is in polling mode.

This function is non-reentrant.

PARAMETERS

stream Pointer to the stream state structure.

data Buffer to read received data into.

length Maximum number of bytes to read.

tmout Time to wait between received bytes before returning.

RETURN VALUE

Number of bytes read into the data buffer

LIBRARY

SP_STREAM.LIB
 The Slave Port Driver rabbit.com 118

http://www.rabbit.com

SPSwrite

int SPSwrite(SPSream *stream, void *data, int length);

DESCRIPTION

This function transmits length bytes to slave port output buffer. If the slave port is in polling mode,
this function will call SPtick() while waiting for the output buffer to empty. This function is
non-reentrant.

PARAMETERS

stream Pointer to the stream state structure.

data Bytes to write to stream.

length Size of write buffer.

RETURN VALUE

Number of bytes written into the data buffer.

LIBRARY

SP_STREAM.LIB

SPSwrFree

int SPSwrFree(void);

DESCRIPTION

Returns number of free bytes in the stream write buffer.

RETURN VALUE

Space available in the stream write buffer.

LIBRARY

SP_STREAM.LIB
 The Slave Port Driver rabbit.com 119

http://www.rabbit.com

SPSrdFree

int SPSrdFree(void);

DESCRIPTION

Returns the number of free bytes in the stream read buffer.

RETURN VALUE

Space available in the stream read buffer.

LIBRARY

SP_STREAM.LIB

SPSwrUsed

int SPSwrUsed(void);

DESCRIPTION

Returns the number of bytes currently in the stream write buffer.

RETURN VALUE

Number of bytes currently in the stream write buffer.

LIBRARY

SP_STREAM.LIB
 The Slave Port Driver rabbit.com 120

http://www.rabbit.com

SPSrdUsed

int SPSrdUsed(void);

DESCRIPTION

Returns the number of bytes currently in the stream read buffer.

RETURN VALUE

Number of bytes currently in the stream read buffer.

LIBRARY

SP_STREAM.LIB
 The Slave Port Driver rabbit.com 121

http://www.rabbit.com

 8.3.3.2 Byte Stream Sample Program

This program, /Samples/SlavePort/Slave_Demo.c, runs on a slave and implements a byte
stream over the slave port.

#class auto

#use "slave_port.lib"
#use "sp_stream.lib"

#define STREAM_BUFFER_SIZE 31

main()
{

char buffer[10];
int bytes_read;

SPStream stream;

// Circular buffers need 9 bytes for bookkeeping.
char stream_inbuf[STREAM_BUFFER_SIZE + 9];
char stream_outbuf[STREAM_BUFFER_SIZE + 9];

SPStream *stream_ptr;

// setup buffers
cbuf_init(stream_inbuf, STREAM_BUFFER_SIZE);
stream.inbuf = stream_inbuf;
cbuf_init(stream_outbuf, STREAM_BUFFER_SIZE);
stream.outbuf = stream_outbuf;

stream_ptr = &stream;

SPinit(1);

SPsetHandler(0x42, SPShandler, stream_ptr);

while(1)
{

bytes_read = SPSread(stream_ptr, buffer, 10, 10);
if(bytes_read)
{

SPSwrite(stream_ptr, buffer, bytes_read);
}

}
}

 The Slave Port Driver rabbit.com 122

http://www.rabbit.com

 9. RUN-TIME ERRORS

Compiled code generated by Dynamic C calls an exception handling routine for run-time errors. The
exception handler supplied with Dynamic C prints internally defined error messages to a Windows mes-
sage box when run-time errors are detected during a debugging session. When software runs stand-alone
(disconnected from Dynamic C), such a run-time error will cause a watchdog timeout and reset. Run-time
error logging is available for Rabbit-based target systems with battery-backed RAM.

9.1 Run-Time Error Handling
When a run-time error occurs, a call is made to exception(). The run-time error type is passed to
exception(), which then pushes various parameters on the stack, and calls the installed error handler.
The default error handler places information on the stack, disables interrupts, and enters an endless loop by
calling the _xexit function in the BIOS. Dynamic C notices this and halts execution, reporting a run-
time error to the user.

9.1.1 Error Code Ranges
The table below shows the range of error codes used by Dynamic C and the range available for a custom
error handler to use. Table 9-1 is valid prior to Dynamic C version 9.30. Starting with DC 9.30, the file
errmsg.ini located in the root directory of Dynamic C can be edited to add descriptions for user-
defined run-time errors that will be displayed by Dynamic C should the error occur.

For example, if the following entry is made in errmsg.ini:

// My custom errors
800=My own run-time error message

Calling “exit(-800)” in an application or library will cause Dynamic C to report “My own run-time error
message” in a message box.

Please see Section 9.2 for information on replacing the default error handler with a custom one.
Dynamic C User’s Manual rabbit.com 123

http://www.rabbit.com

9.1.2 Fatal Error Codes
This table lists the fatal errors generated by Dynamic C.

Table 9-1. Dynamic C Fatal Errors

Error Type Meaning

127 - 227 not used

228 Pointer store out of bounds

229 Array index out of bounds

230 - 233 not used

234 Domain error (for example, acos(2))

235 Range error (for example, tan(pi/2))

236 Floating point overflow

237 Long divide by zero

238 Long modulus, modulus zero

239 not used

240 Integer divide by zero

241 Unexpected interrupt

242 not used

243 Codata structure corrupted

244 Virtual watchdog timeout

245 XMEM allocation failed (xalloc call)

246 Stack allocation failed

247 Stack deallocation failed

248 not used

249 Xmem allocation initialization failed

250 No virtual watchdog timers available

251 No valid MAC address for board

252 Invalid cofunction instance

253 Socket passed as auto variable while running µC/OS-II

254 - 255 not used
 Run-Time Errors rabbit.com 124

http://www.rabbit.com

9.2 User-Defined Error Handler
Dynamic C allows replacement of the default error handler with a custom error handler. This is needed to
add run-time error handling that would require treatment not supported by the default handler.

A custom error handler can also be used to change how existing run-time errors are handled. For example,
the floating-point math libraries included with Dynamic C are written to allow for execution to continue
after a domain or range error, but the default error handler halts with a run-time error if that state occurs. If
continued execution is desired (the function in question would return a value of INF or whatever value is
appropriate), then a simple error handler could be written to pass execution back to the program when a
domain or range error occurs, and pass any other run-time errors to Dynamic C.

9.2.1 Replacing the Default Handler
To tell the BIOS to use a custom error handler, call this function:

void defineErrorHandler(void *errfcn)

This function sets the BIOS function pointer for run-time errors to the one passed to it.

When a run-time error occurs, exception() pushes onto the stack the information detailed in the table
below.

.

Then exception() calls the installed error handler. If the error handler passes the run-time error to
Dynamic C (i.e. it is a fatal error and the system needs to be halted or reset), then registers must be loaded
appropriately before calling the _xexit function.

Dynamic C expects the following values to be loaded:

Table 9-2. Stack Setup for Run-time Errors

Address Data at address

SP+0 Return address for error handler

SP+2 Error code

SP+4 Additional data (user-defined)

SP+6
XPC when exception() was called (upper
byte)

SP+8 Address where exception() was called from

Table 9-3. Register Contents Loaded by Error Handler Before Passing the Error to
Dynamic C

Register Expected Value

H XPC when exception() was called

L Run-time error code

HL’ Address where exception() was called from
 Run-Time Errors rabbit.com 125

http://www.rabbit.com

9.3 Run-Time Error Logging
Error logging is available as a BIOS enhancement for storing run-time exception history. It can be useful
diagnosing problems in deployed Rabbit targets. To support error logging, the target must have battery-
backed RAM.

Error logging is no longer supported as of Dynamic C 10.40.

9.3.1 Error Log Buffer
A circular buffer in extended RAM will be filled with the following information for each run-time error
that occurs:

• The value of SEC_TIMER at the time of the error. This variable contains the number of seconds since
00:00:00 on January 1st 1980 if the real-time clock has been set correctly. This variable is updated by
the periodic timer which is enabled by default. Rabbit sets the real-time clock in the factory. When the
BIOS starts on boards with batteries, it initializes SEC_TIMER to the value in the real-time clock.

• The address where the exception was called from. This can be traced to a particular function using the
MAP file generated when a Dynamic C program is compiled.

• The exception type. Please see Table 9-1 on page 124 for a list of exception types.

• The value of all registers. This includes alternate registers, SP and XPC. This is a global option that is
enabled by default.

• An 8-byte message. This is a global option that is disabled by default. The default error handler does
nothing with this.

• A user-definable length of stack dump. This is a global option that is enabled by default.

• A one byte checksum of the entry.

The size of the error log buffer is determined by the number of entries, the size of an entry, and the header
information at the beginning of the buffer. The number of entries is determined by the macro
ERRLOG_NUM_ENTRIES (default is 78). The size of each entry is dependent on the settings of the global
options for stack dump, register dump and error message. The default size of the buffer is about 4K in
extended RAM.

9.3.2 Initialization and Defaults
An initialization of the error log occurs when the BIOS is compiled, when cloning takes place or when the
BIOS is loaded via the Rabbit Field Utility (RFU). By default, error logging is disabled.

The error log buffer contains header information as well as an entry for each run-time error. A debug start-
up will zero out this header structure, but the run-time error entries can still be examined from Dynamic C
using the static information in flash. The header is at the start of the error log buffer and contains:

• A status byte

• The number of errors since deployment

• The index of the last error

• The number of hardware resets since deployment

• The number of watchdog time-outs since deployment
 Run-Time Errors rabbit.com 126

http://www.rabbit.com

• The number of software resets since deployment

• A checksum byte.

“Deployment” is defined as the first power up without the programming cable attached. Reprogramming
the board using the programming cable, the RFU, or a RabbitLink board and starting the program again
without the programming cable attached is a new deployment.

9.3.3 Configuration Macros
These macros are defined in Lib\..\BIOSLIB\errlogconfig.lib. Define these macros in your
project to use them. For instructions on how to do that, see the “Defines Tab” on page 284.

ENABLE_ERROR_LOGGING
Default: 0. Disables error logging. Changing this to “1” enables error logging.

ERRLOG_USE_REG_DUMP
Default: 1. Include a register dump in log entries. Changing this to zero excludes the register dump in
log entries.

ERRLOG_STACKDUMP_SIZE
Default: 16. Include a stack dump of size ERRLOG_STACKDUMP_SIZE in log entries. Changing this
to zero excludes the stack dump in log entries.

ERRLOG_NUM_ENTRIES
Default: 78. This is the number of entries allowed in the log buffer.

ERRLOG_USE_MESSAGE
Default: 0. Exclude error messages from log entries. Changing this to “1” includes 8 byte error mes-
sages in log entries The default error handler makes no use of this feature.
 Run-Time Errors rabbit.com 127

http://www.rabbit.com

9.3.4 Error Logging Functions
The run-time error logging API consists of the following functions:

9.3.5 Examples of Error Log Use
To try error logging, follow the instructions at the top of the sample programs:

samples\ErrorHandling\Generate_runtime_errors.c

and

samples\ErrorHandling\Display_errorlog.c

errlogGetHeaderInfo Reads error log header and formats output.

errlogGetNthEntry Loads errLogEntry structure with the Nth entry
from the error log buffer. errLogEntry is a pre-
allocated global structure.

errlogGetMessage Returns a NULL-terminated string containing the 8 byte
error message in errLogEntry.

errlogFormatEntry Returns a NULL-terminated string containing basic
information in errLogEntry.

errlogFormatRegDump Returns a NULL-terminated string containing the
register dump in errLogEntry.

errlogFormatStackDump Returns a NULL-terminated string containing the stack
dump in errLogEntry.

errlogReadHeader Reads error log header into the structure
errlogInfo.

ResetErrorLog Resets the exception and restart type counts in the error
log buffer header.
 Run-Time Errors rabbit.com 128

http://www.rabbit.com

 10. MEMORY MANAGEMENT

Processor instructions can specify 16-bit addresses, giving a logical address space of 64K (65,536 bytes).
Dynamic C supports a physical address space of 1 MB on all Rabbit-based boards. Dynamic C 10.21 intro-
duces support for a physical address space of 16 MB of combined code and data on Rabbit 4000 or 5000
based boards, with up to 1 MB for code. Dynamic C has been verified to work with Rabbit-based boards
with 4.5 MB of memory.

An on-chip memory management unit (MMU) translates 16-bit addresses to 24-bit memory addresses for
Rabbit 4000 and 5000 based boards. Four MMU registers (SEGSIZE, STACKSEG, DATASEG and XPC)
divide and maintain the logical sections and map each section onto physical memory. Any memory beyond
the 16-bit address capability of the processor, whether flash or RAM, is called xmem and requires memory
management techniques for access.

10.1 Memory Map
A typical Dynamic C memory mapping of logical and physical address space is shown in the figure below.
The actual layout may be different depending on the Rabbit processor used, the board type and which
compilation options are selected. For example, enabling separate I&D space will affect the memory map.

Figure 10.1 Dynamic C Memory Mapping with a Rabbit 4000-Based Board
Dynamic C User’s Manual rabbit.com 129

http://www.rabbit.com

The register set provided by the Rabbit makes it easy to access the physical memory directly, bypassing
the logical to physical mapping and allowing linear access of up to 16 MB. The size of the physical
address space is determined by the quadrant size.

The quadrant size is determined by the MMU Expanded Code Register (MECR). This register contains the
Bank Select Address setting. The Bank Select Address represents the two most significant bits of the phys-
ical address that will be used to select among the different quadrants. By defaul in Dynamic C 10.40, the
MECR selects A20 and A19, thus leaving 19 bits for the address, which results in a quadrant size of 512
KB and a physical address space of 2 MB.

Figure 10.1 illustrates how the logical address space is divided and where code resides in physical mem-
ory. Both the static RAM and the flash memory are 1 MB in the diagram. Physical memory starts at
address 0x000000 and flash memory is usually mapped to the same address. SRAM typically begins at
address 0x100000.

If BIOS code runs from flash memory, the BIOS code starts in the root code section at address 0x000000
and fills upward. The rest of the root code will continue to fill upward immediately following the BIOS
code. If the BIOS code runs from SRAM, the root code section, along with root data and stack sections,
will start at address 0x100000.

10.1.1 Memory Mapping Control
The advanced user of Dynamic C can control how Dynamic C allocates and maps memory. For details on
memory mapping, refer to any of the Rabbit microprocessor user’s manuals or designer’s handbooks. You
can also refer to one of our technical notes: TN202, “Rabbit Memory Management in a Nutshell.” All of
these documents are available at:

www.rabbitsemiconductor.com/docs/

10.2 Extended Memory Functions
A program can use many pages of extended memory (xmem). Under normal execution, code in xmem
maps to the logical address region 0xE000 to 0xFFFF. To move blocks of data between logical memory
and physical memory, you can still use the Dynamic C functions root2xmem(), xmem2root() and
xmem2xmem(); however Dynamic C also has the “far” keyword, which makes use of physical addresses
and thereby eliminates the need for root2xmem(), xmem2root() and xmem2xmem().

10.3 Code Placement in Memory
Code runs just as quickly in extended memory as it does in root memory, but calls to and returns from the
functions in extended memory take a few extra machine cycles. Code placement in memory can be
changed by the keywords xmem and root, depending on the type of code:

Pure Assembly Routines

Pure assembly functions may be placed in root memory or extended memory. Prior to Dynamic C version
7.10, pure assembly routines had to be in root memory.
 Memory Management rabbit.com 130

http://www.rabbit.com
http://www.rabbitsemiconductor.com/docs/

C Functions

C functions may be placed in root memory or extended memory. Access to variables in C statements is not
affected by the placement of the function. Dynamic C will automatically place C functions in extended
memory as root memory fills. Short, frequently used functions may be declared with the root keyword to
force Dynamic C to load them in root memory.

Inline Assembly in C Functions

Inline assembly code may be written in any C function, regardless of whether it is compiled to extended
memory or root memory.

All static variables, even those local to extended memory functions, are placed in root memory. Keep this
in mind if the functions have many variables or large arrays. Root memory can fill up quickly.

10.4 Dynamic Memory Allocation
A Dynamic C application can allocate a pool of memory at compile time for dynamic allocation and deal-
location of fixed-size blocks at run time. A pool can be located in root or extended memory. Descriptions
for all API functions for dynamic memory allocation are in the Dynamic C Function Reference Manual. Or
use Function Lookup from the Help menu (or Ctrl+H) to gain quick access to the function descriptions
from within Dynamic C.

Read the comments at the top of \LIB\..\POOL.LIB for a description of how to use dynamic memory
allocation in Dynamic C.
 Memory Management rabbit.com 131

http://www.rabbit.com

 11. DIRECT MEMORY ACCESS

Dynamic C version 10 introduced support for the internal DMA controller of the Rabbit 4000 micropro-
cessor. DMA stands for “Direct Memory Access.” The DMA controller takes control of the address and
data bus from the CPU so that data transfers occur without processor handling.There are eight DMA chan-
nels; a DMA channel is a system pathway for transferring data directly to or from memory and peripheral
devices without using the CPU. DMA memory addresses are always physical addresses and are never
translated by the MMU.

The rest of this section discusses DMA from a software perspective. For detailed information about the
DMA controller, see the Rabbit 4000 Microprocessor User’s Manual.

11.1 DMA Registers and Global Resources
There are some global resources associated with all DMA channels. These resources are managed by
Dynamic C libraries because it would be difficult for most users to determine their optimal usage. The
library DMA.LIB contains all of the DMA functionality available to the user. The advanced user can man-
ually override the library settings by directly manipulating the DMA control registers; however, this is not
recommended.

The debug function DMAprintRegs() lets you view the values of the DMA master registers:

• DMCR (DMA Master Control Register) - Transfer and interrupt priority levels.

• DMCSR (DMA Master Control/Status Register) - DMA channel status

• DMTCR (DMA Master Timing Control Register) - Sets the burst size, the inter-burst timing and the rela-
tive prioritization of the channels.

For more information on Rabbit registers, click on “I/O Registers” on the Dynamic C help menu or consult
the Rabbit 4000 Microprocessor User’s Manual (or the user’s manual specific to your Rabbit) to get infor-
mation about directly manipulating the DMA registers.

11.2 API Functions
Dynamic C provides several API functions for use with the DMA controller that was introduced with the
Rabbit 4000. These functions make it unnecessary for an application to directly manipulate the DMA reg-
isters. Complete descriptions for all DMA API functions can be found from within Dynamic C using the
Function Lookup feature from the help menu (Ctrl+H); also, in the Dynamic C Function Reference Man-
ual. In this section we will look at some of these functions.

The function DMAalloc() is called to allocate a DMA channel; the function DMAunalloc() is called
to release it. The handle returned by DMAalloc() is passed to all the DMA transfer functions (see
Section 11.4) and must be passed to DMAunalloc() to release the channel. All eight channels are iden-
tical, with the priority between them either fixed or rotating.
Dynamic C User’s Manual rabbit.com 132

http://www.rabbit.com

The function DMAsetParameters() accepts parameters that set transfer and interrupt priority levels,
channel priority, maximum bytes per burst and minimum clocks between bursts.
DMAsetParameters() must be called by an application before a DMA channel can be used; however,
the channel can be allocated before DMAsetParameters() is called. The DMA parameters set in
DMAsetParameters() are global, that is, they apply to all channels.

Some low-level functions are also provided for the DMA controller. These functions use the DMA channel
number instead of the handle returned by DMAalloc(). The function DMAhandle2chan() provides
a DMA channel number when passed a valid handle.

The low-level functions DMAsetBufDesc() and DMAloadBufDesc() work with a buffer descriptor
associated with a DMA channel. A buffer descriptor is a memory structure that controls the DMA opera-
tion. It contains a control byte, a byte count for the data, a source address, a destination address and an
optional link address. Low-level transfer functions are provided for use with the buffer descriptor func-
tions. They are DMAstartAuto() and DMAstartDirect().

Sample programs located in Samples\Rabbit4000\DMA\ illustrate many of the API functions.

11.3 DMA Interrupts
An interrupt may be requested when a DMA channel has completed transferring data. All channels assert
this type of interrupt at the same priority level, which can be set to level 1, 2, or 3 with a call to
DMAsetParameters(). Whether or not an interrupt is requested at the end of a transfer is determined
by flag options in the DMA transfer function. See Section 11.4.4 for more information.

Each channel has its own interrupt vector in the processor’s external interrupt vector table.

11.4 DMA Transfer Information
A DMA transfer is requested when the channel wants the DMA controller to take control of the address
and data buses.

11.4.1 DMA Transfer Priority
DMA transfers may be programmed to occur at any priority level (0, 1, 2, or 3). Relative prioritization
among the DMA channels is set using one of the following constants:

• DMA_IDP_FIXED - fixed priorities, with higher channel numbers taking precedence

• DMA_IDP_ROTATE_FINE - priorities are rotated after every byte transferred

• DMA_IDP_ROTATE_COARSE - priorities rotated after every transfer request, the size of which is
determined by “chunkiness,” another parameter also passed to the function
DMAsetParameters().

The DMA transfer priority and the relative prioritization among channels are set in
DMAsetParameters().
 Direct Memory Access rabbit.com 133

http://www.rabbit.com

11.4.2 DMA Transfer Mode
DMA transfers can happen in burst or single-cycle mode. The “chunkiness” parameter passed to the DMA
transfer function determines the burst size.

11.4.3 DMA Transfer Functions
There are three types of transfers, with associated transfer functions.

1. Memory-to-memory transfers. Use DMAmem2mem().

2. Internal I/O address transfers to or from memory. Use DMAioi2mem() and DMAmem2ioi(),
respectively.

3. External I/O address transfers to or from memory. Use DMAioe2mem() and DMAmem2ioe(),
respectively.

11.4.4 DMA Transfer Function Flags
The DMA transfer functions accept the following flags:

• DMA_F_REPEAT - transfer will be a cycle.

• DMA_F_INTERRUPT - indicates an interrupt will be triggered at the completion of the transfer.

• DMA_F_LAST_SPECIAL - (only for Ethernet or HDLC peripherals) Internal Source: Status byte
written to initial buffer descriptor before last data. Internal Destination: Last byte written to offset
address for frame termination.

• DMA_F_SRC_DEC - only for transfers with memory source. Indicates the source address should be
decremented.

• DMA_F_DEST_DEC - only for transfers with memory destination. Indicates the destination address
should be incremented.

• DMA_F_STOP_MATCH - indicates whether or not to stop the DMA transfer when a character is
reached. The match byte and mask should have been set previously by calling the
DMAmatchSetup() function.

• DMA_F_TIMER - indicates the DMA timer will be used. Set the divisor first by calling the
DMAtimerSetup() function. DMA_F_TIMER_1BPR indicates that the timed transfers will send
one byte per request instead of the entire descriptor.

11.5 DMA with Ethernet
Use of the Rabbit 4000 Ethernet imposes some restrictions on the global DMA settings. It is recommended
that applications make use of the DMA API functions to avoid possibly breaking Ethernet by using DMA
settings that are not compatible with the Ethernet restrictions. For example, Ethernet uses DMA channels 6
and 7 and fixed prioritization among the channels. There are also requirements regarding burst size and the
minimum time between bursts. If you are using Ethernet and call the function DMAsetParameters()
with parameters that are not compatible with the Ethernet restrictions, those parameters will be quietly
ignored.
 Direct Memory Access rabbit.com 134

http://www.rabbit.com

 12. FAT FILE SYSTEM

Dynamic C comes with a FAT (File Allocation Table) file system. The small footprint of this well-defined
industry-standard file system makes it ideal for embedded systems. The Dynamic C implementation of
FAT has a directory structure that can be accessed with either Unix or DOS style paths. The standard direc-
tory structure allows monitoring, logging, Web browsing, and FTP updates of files.

The Dynamic C implementation of FAT supports both SPI-based serial flash devices and NAND flash
devices. FAT version 2.13 adds support for SD cards and requires Dynamic C 10.21 or later. In all versions
of the FAT, a battery-backed write-back cache reduces wear on the flash device and a round-robin cluster
assignment helps spread the wear over its surface.

Please be sure check the Rabbit website for software patches and updates to Dynamic C, the FAT filessy-
tem, and for your specific hardware:

www.rabbit.com/support/downloads/

The FAT library can be used in either blocking or non-blocking mode and supports both FAT12i and
FAT16. (See Section 12.5.3.1 for more information on these FAT types.)

Operations performed by the Dynamic C FAT implementation are:

• Formatting and partitioning of devices

• Formatting partitions

• File operations: create, open, close, delete, seek, read and write

• Directoryii operations: create, read and delete

• Labels: create and delete

Let’s define some terms before continuing.

A device is a single physical hardware item such as a hard drive, a serial flash or a NAND flash. E.g., one
serial flash is a single device. The device, in turn, can host one to four partitions.

A partition is a range of logical sectors on a device. A real-world example of a partition is what is com-
monly known as the C drive on a PC.

Blocking is a term that describes a function’s behavior in regards to completion of the requested task. A
blocking function will not return until it has completely finished its task. In contrast, a non-blocking func-
tion will return to its calling function before the task is finished if it is waiting for something. A non-block-

i. Be advised that FAT12 support will not be available in future Dynamic C versions. It is not recommended
that you enable FAT12 support except to retrieve data before re-formatting partitions to FAT16. With
FAT12 disabled, smaller partitions will be formatted as FAT16. With FAT12 enabled, small partitions for-
matted FAT16 are functional

ii. We use the terms directory and subdirectory somewhat interchangeably. The exception is the root
directory—it is never called a subdirectory. Any directory below the root directory may be referred to as
a directory or a subdirectory.
Dynamic C User’s Manual rabbit.com 135

http://www.rabbit.com/support/downloads/
http://www.rabbit.com

ing function can return a code that indicates it is not finished and should be called again. Used in
conjunction with cooperative multitasking, non-blocking functions allow other processes to proceed while
waiting for hardware resources to finish or become available.

A driver is the software interface that handles the hardware-specific aspects of any communication to or
from the device.

12.1 Overview of FAT Documentation
A sample program is reviewed in Section 12.2. Two additional sample programs, one for use with the
blocking mode of the FAT and the other for use with the non-blocking mode are described in Section 12.3.
Then Section 12.4 gives detailed descriptions of the various FAT file system functions (formatting, open-
ing, reading, writing, and closing). Short, focused examples accompany each description. There is some
general information about FAT file systems and also some web links for further study in Section 12.5.

NOTE: All error codes returned from the Dynamic C FAT file system are defined in
\Lib\Rabbit4000\ERRNO.LIB.

12.2 Running Your First FAT Sample Program
To run FAT samples, you need a Rabbit-based board with a supported flash type, such as the serial flash
device available on the RCM4200 and 4210. FAT version 2.13 requires Dynamic C 10.21 or later and adds
support for SD cards, which are available on the RCM4300 and 4310.

The board must be powered up and connected to a serial port on your PC through the programming cable
to download a sample program.

In this section we look at fat_create.c, which demonstrate the basic use of the FAT file system. If
you are using a serial or NAND flash device that has not been formatted or a removable device that was
not formatted using Dynamic C, you must run Samples\FileSystem\Fmt_Device.c before you
can run any other sample FAT program. The program, Fmt_Device.c, creates the default configuration
of one partition that takes up the entire device.

If you are using an SD card, run Fmt_Device.c to remove the factory FAT32 partition and create a
FAT16 partition. Be aware that although multiple partitions are possible on removable cards, most PC’s
will not support cards formatted in this fashion.

If you are using a removable NAND flash (XD cards), running Fmt_Device.c causes the device to no
longer be usable without the Rabbit-based board or the Rabbit USB Reader for XD cards. Insert the
NAND flash device into a USB-based flash card reader and format it to regain this usability. Note that this
will only work if you have not defined the macro NFLASH_CANERASEBADBLOCKS. Defining this
macro in a running application destroys proprietary information on the first block of the device, making it
difficult to regain the usability of the NAND device when used without the Rabbit-based board.

If you are using FAT version 2.01 or later, you do not have to run Fmt_Device.c if you initialize the
FAT file system with a call to fat_AutoMount() instead of fat_Init(). The function
fat_AutoMount() can optionally format the device if it is unformatted; however,
fat_AutoMount() will not erase and overwrite a factory-formatted removable device such as an SD
card. If you are using an SD card, run Fmt_Device.c or erase the first three pages with the appropriate
flash utitity (sdflash_inspect.c or nflash_inspect.c).
 FAT File System rabbit.com 136

http://www.rabbit.com

After the device has been formatted, open Samples\FileSystem\fat_create.c. Compile and
run the program by pressing function key F9.

In a nutshell, fat_create.c initializes FAT, then creates a file, writes “Hello world!” to it, and then
closes the file. The file is re-opened and the file is read, which displays “Hello world!” in the Dynamic C
Stdio window. Understanding this sample will make writing your own FAT application easier.

The sample program has been broken into two functional parts for the purpose of discussion. The first part
deals with getting the file system up and running. The second part is a description of writing and reading
files.

12.2.1 Bringing Up the File System
We will look at the first part of the code as a whole, and then explain some of its details.

File Name: Samples\FileSystem\fat_create.c

#define FAT_BLOCK // use blocking mode
#use "fat.lib" // of FAT library

FATfile my_file; // get file handle
char buf[128]; // 128 byte buffer for read/write of file

int main(){
int i;
int rc; // Check return codes from FAT API
long prealloc; // Used if the file needs to be created.
fat_part *first_part; // Use the first mounted FAT partition.

rc = fat_AutoMount(FDDF_USE_DEFAULT);

first_part = NULL;
for(i=0;i < num_fat_devices * FAT_MAX_PARTITIONS; ++i)
{// Find the first mounted partition
if ((first_part = fat_part_mounted[i]) != NULL) {
break; // Found mounted partition, so use it
}
}

if (first_part == NULL) { // Check if mounted partition was found
rc = (rc < 0) ? rc : -ENOPART; // None found, set rc to a FAT error code
} else{
printf("fat_AutoMount() succeeded with return code %d.\n", rc);
rc = 0; // Found partition; ignore error, if any
}

if (rc < 0){ // negative values indicate error
if (rc == -EUNFORMAT)
printf("Device not Formatted, Please run Fmt_Device.c\n");
else
printf("fat_AutoMount() failed with return code %d.\n", rc);
exit(1);
} // OK, file system exists and is ready to access. Let's create a file.
 FAT File System rabbit.com 137

http://www.rabbit.com

The first two statements:

#define FAT_BLOCK
#use "fat.lib"

cause the FAT library to be used in blocking mode.

The configuration library fat.lib chooses initialization settings based on the board type.The statement
#use “fat.lib” brings in this configuration library, which in turn brings in the appropriate device
driver library. The following table lists the device drivers that are available in the different FAT versions.

Defining the macro _DRIVER_CUSTOM notifies fat_config.lib that a custom driver or hardware
configuration is being used. For more information on how this works, see Section 12.5

Next some static variables are declared: a file structure to be used as a handle to the file that will be created
and a buffer that will be used for reading and writing the file.

Now we are in main(). First there are some variable declarations: the integer rc is for the code returned
by the FAT API functions. This code should always be checked, and must be checked if the non-blocking
mode of the FAT is used. The descriptions for each function list possible return codes.

The variable prealloc stores the number of bytes to reserve on the device for use by a specific file.
These clusters are attached to the file and are not available for use by any other files. This has some advan-
tages and disadvantages. The obvious disadvantage is that it uses up space on the device. Some advantages
are that having space reserved means that a log file, for instance, could have a portion of the drive set aside
for its use only. Another advantage is that if you are transferring a known amount of information to a file,
pre-allocation not only sets aside the space so you know you will not get half way through and run out, but
it also makes the writing process a little faster as the allocation of clusters has already been dealt with so
there is no need to spend time getting another cluster.

This feature should be used with care as pre-allocated clusters do not show up on directory listings until
data is actually written to them, even though they have locked up space on the device. The only way to get
unused pre-allocated clusters back is to delete the file to which they are attached, or use the
fat_truncate() or fat_split() functions to trim or split the file. In the case of fat_split(),
the pre-allocated space is not freed, but rather attached to the new file created in the split.

Table 1.

FAT Version Available Device Drivers

2.12
sflash_fat.lib
nflash_fat.lib

2.13
sflash_fat.lib
nflash_fat.lib
SD_fat.lib
 FAT File System rabbit.com 138

http://www.rabbit.com

Lastly, a pointer to a partition structure is declared with the statement:

fat_part *first_part;

This pointer will be used as a handle to an active partition. (The fat_part structure and other data struc-
tures needed by the FAT file system are discussed in fat_AutoMount().) The partition pointer will be
passed to API functions, such as fat_open().

Now a call is made to fat_AutoMount(). This function was introduced in FAT version 2.01 as a
replacement for fat_Init(). Whereas fat_Init() can do all the things necessary to ready the first
partition on the first device for use, it is limited to that. The function fat_AutoMount() is more flexi-
ble because it uses data from the configuration file fat_config.lib to identify FAT partitions and to
optionally ready them for use, depending on the flags parameter that is passed to it. The flags parameter is
described in the function description for fat_AutoMount().

For this sample program, we are interested in the first usable FAT partition. The for loop after the call to
fat_AutoMount() finds the partition, if one is available.

The for loop allows us to check every possible partition by using num_fat_devices, which is the
number of configured devices, and then multiplying the configured devices by the maximum number of
allowable partitions on a device, which is four. The for loop also makes use of fat_part_mounted,
an array of pointers to partition structures that is populated by the fat_autoMount() call.
 FAT File System rabbit.com 139

http://www.rabbit.com

12.2.2 Using the File System
The rest of fat_create.c demonstrates how to use the file system once it is up and running.

File Name: Samples\FileSystem\fat_create.c

prealloc = 0;

rc = fat_Open(first_part, "HELLO.TXT", FAT_FILE, FAT_CREATE,
&my_file, &prealloc);

if (rc < 0) {
printf("fat_Open() failed with return code %d\n", rc);
exit(1);
}
rc = fat_Write(&my_file, "Hello, world!\r\n", 15);

if (rc < 0) {
printf("fat_Write() failed with return code %d\n", rc);
exit(1);
}
rc = fat_Close(&my_file);
if (rc < 0) {
printf("fat_Close() failed with return code %d\n", rc);
}

rc = fat_Open(first_part, "HELLO.TXT",FAT_FILE, 0, &my_file, NULL);

if (rc < 0) {
printf("fat_Open() (for read) failed, return code %d\n", rc);
exit(1);
}
rc = fat_Read(&my_file, buf, sizeof(buf));
if (rc < 0) {
printf("fat_Read() failed with return code %d\n", rc);
}
else {
printf("Read %d bytes:\n", rc);
printf("%*.*s", rc, rc, buf); // Print a string which is not NULL terminated
printf("\n");
}
fat_UnmountDevice(first_part->dev);
printf("All OK.\n");
return 0;
}

 FAT File System rabbit.com 140

http://www.rabbit.com

The call to fat_Open() creates a file in the root directory and names it HELLO.TXT. A file must be
opened before you can write or read it.
rc = fat_Open(first_part, "HELLO.TXT", FAT_FILE, FAT_CREATE, &my_file,

&prealloc);

The parameters are as follows:

• first_part points to the partition structure initialized by fat_AutoMount().

• "HELLO.TXT" is the file name, and is always an absolute path name relative to the root directory. All
paths in Dynamic C must specify the full directory path explicitly.

• FAT_FILE identifies the type of object, in this case a file. Use FAT_DIR to open a directory.

• FAT_CREATE creates the file if it does not exist. If the file does exist, it will be opened, and the posi-
tion pointer will be set to the start of the file. If you write to the file without moving the position
pointer, you will overwrite existing data.

Use FAT_OPEN instead of FAT_CREATE if the file or directory should already exist. If the file does
not exist, you will get an -ENOENT error.

Use FAT_MUST_CREATE if you know the file does not exist. This is a fail-safe way to avoid opening
and overwriting an existing file since an -EEXIST error is returned if you attempt to create a file that
already exists.

• &my_file is a file handle that points to an available file structure. It will be used for this file until the
file is closed.

• &prealloc points to the number of bytes to allocate for the file. You do not want to pre-allocate any
more than the minimum number of bytes necessary for storage, and so prealloc was set to 0. You
could also use NULL instead of prealloc and prealloc = 0.

Next, the sample program writes the data "Hello, world!\r\n" to the file.

fat_Write(&my_file, "Hello, world!\r\n", 15);

The parameters are as follows:

• &my_file is a pointer to the file handle opened by fat_Open().

• “Hello, world!\r\n” is the data written to the file. Note that \r\n (carriage return, line feed)
appears at the end of the string in the call. This is essentially a FAT (or really, DOS) convention for text
files. It is good practice to use the standard line-end conventions. (If you just use \n, the file will read
just fine on Unix systems, but some DOS-based programs may have difficulties.)

• 15 is the number of characters to write. Be sure to select this number with care since a value that is too
small will result in your data being truncated, and a value that is too large will append any data that
already exists beyond your new data.

The file is closed to release the file handle to allow it to be used to identify a different file.

rc = fat_Close(&my_file);

The parameter &my_file is a handle to the file to be closed. Remember to check for any return code
from fat_Close() since an error return code may indicate the loss of data.
 FAT File System rabbit.com 141

http://www.rabbit.com

The file must be opened for any further work, even though &my_file may still reference the desired file.
The file must be open to be active, so we call fat_Open() again. Now the file can be read.

rc = fat_Read(&my_file, buf, sizeof(buf));

The function fat_Read() returns the number of characters actually read. The parameters are as follows:

• &my_file is a handle to the file to be read.

• buf is a buffer for reading/writing the file that was defined at the beginning of the program.

• sizeof(buf) is the number of bytes to be read into buf. It does not have to be the full size of the
buffer

Characters are read beginning at the current position of the file. (The file position can be changed with the
fat_Seek() function.) If the file contains fewer than sizeof(buf) characters from the current posi-
tion to the end-of-file marker (EOF), the transfer will stop at the EOF. If the file position is already at EOF,
0 is returned. The maximum number of characters read is 32767 bytes per call.

The file can now be closed. Call fat_UnmountDevice()i rather than simply calling fat_Close()
to ensure that any data stored in cache will be written to the device. With a write-back cache, writes are
delayed until either:

• all cache buffers are full and a new FAT read request requires a “dirty” cache buffer to be written out
before the read can take place, or

• cache buffers for a partition or a device are being flushed due to an unmount call or explicit flush call.

Calling fat_UnmountDevice() will close all open files and unmount all mounted FAT partitions.
This is the safest way to shut down a device. The parameter first_part->dev is a handle to the
device to be unmounted.

fat_UnmountDevice(first_part->dev);

NOTE: A removable device must be unmounted in order to flush its data before
removal. Failure to unmount any partition on a device that has been written to could
corrupt the file system.

i. Call fat_UnmountPartition() when using a FAT version prior to v2.06.
 FAT File System rabbit.com 142

http://www.rabbit.com

12.3 More Sample Programs
This section studies blocking sample FAT_SHELL.C and non-blocking sample FAT_NB_Costate.c
More sample programs are in the Dynamic C folder Samples\FileSystem\FAT. For example, there
is udppages.c, an application that shows how to combine HTTP, FTP and zserver functionality to cre-
ate web content than can be updated via FTP.

As described in Section 12.2, you will need a target board or core module with a supported flash device,
powered up and connected to a serial port on your PC through the programming cable.

12.3.1 Blocking Sample
The sample program Samples\FileSystem\FAT_SHELL.C allows you to use the FAT library by
entering DOS-like or Unix-like commands. To run this sample, open Dynamic C, then open
FAT_SHELL.C. Compile and run FAT_SHELL.C by pressing F9. If the flash device has not been for-
matted and partitioned, FAT_SHELL.C will format and partition the flash device, and then you will be
prompted to run FAT_SHELL.C again (just press F9 when prompted). A display similar to the one shown
in Figure 1 will open in the Dynamic C Stdio window.

Optional parameters are denoted by the square braces [and] following the command name. The [alc] after
“touch” and “mtouch” indicates an optional allocation amount in bytes. The square braces in the descrip-
tion indicate the default value that will be used if the optional parameter is not given.

Figure 1. List of Shell Commands

You can type “h” and press enter at any time to display the FAT shell commands.
 FAT File System rabbit.com 143

http://www.rabbit.com

In the following examples the commands that you enter are shown in boldface type. The response from the
shell program is shown in regular typeface.

This shows the HELLO.TXT file that was created using the FAT_CREATE.C sample program. The file
length is 15 bytes. Cluster 2 has been allocated for this file. The “ls” command will display up to the first
six clusters allocated to a file.

The flag, rhsvdA, displays the file or directory attributes, with upper case indicating that the attribute is
turned on and lower case indicating that the attribute is turned off. In this example, the archive bit is turned
on and all other attributes are turned off.

These are the six attributes:

To create a directory named DIR1, do the following:

This shows that DIR1 was created, and is 1024 bytes (size may vary by flash type).

Now, select DIR1:

Add a new file called RABBIT.TXT:

Note that the file name was appended to the current directory. Now we can write to RABBIT.TXT. The
shell program has predetermined characters to write, and does not allow you to enter your own data.

> ls
Listing '' (dir length 16384)

hello.txt rhsvdA len=15 clust=2
>

r - read-only v - volume label

h - hidden file d - directory

s - system a - archive

> mkdir dir1
Directory '/dir1' created with 1024 bytes
>

> cd dir1
PWD = '/dir1'
>

> touch rabbit.txt
File '/dir1/rabbit.txt' created with 1024 bytes
>

> wr rabbit.txt
File '/dir1/rabbit.txt' written with 1024 bytes out of 1024
>

 FAT File System rabbit.com 144

http://www.rabbit.com

To see what was written, use the “rd” command.

12.3.2 Non-Blocking Sample
To use the FAT file system in non-blocking mode, do not include the statement #define FAT_BLOCK
in your application. The program interface to the library is the same as the blocking version, with the
exception of the return code -EBUSY from many of the API functions.

The sample program Fat_NB_Costate.c in the Samples\FileSystem folder is an example of a
non-blocking application. To view the code in its entirety, open it in Dynamic C. The following discussion
will not examine every line of code, but will focus on what shows the non-blocking nature of the FAT
library and how the application takes advantage of it.

Run Fat_NB_Costate.c and after 10 seconds the Stdio window will show something similar to the fol-
lowing:

Figure 2. Screen Shot of Fat_NB_Costate.c Running

Each line is an entry into a file that is stored in the FAT file system. The file is appended once every second
and read and displayed once every ten seconds. In addition to the file system use and the screen output, if
you are using an RCM3300, RCM3700 or PowerCore FLEX development board, the application blinks
the LED on your board.

The code preceding main() brings in the required library and declares the file structure. And, as
expected, there is no #define for the macro FAT_BLOCK. At the start of main() some system vari-
able are created and initialized. This is followed by the code to bring up the FAT file system, which is sim-
ilar to what we examined in Section 12.2.1 when looking at fat_create.c, with two essential
differences. One, since we have initialized the FAT to be in non-blocking and we are making some calls to
FAT functions that must return before we can continue, we must wait for the return.

> rd rabbit.txt

rabbit.txt 1024 The quick brown fox jumps over the lazy dog
rabbit.txt 1024 The quick brown fox jumps over the lazy dog
.
.
rab

Read 1024 bytes out of 1024
>

 FAT File System rabbit.com 145

http://www.rabbit.com

A while loop accomplishes our goal of blocking on the function call until it returns something other than
busy.

while ((rc = fat_Open(first_part, name, FAT_FILE, FAT_MUST_CREATE,
&file, &alloc)) == -EBUSY);

The second difference from our earlier sample is the statement right before fat_Open():

file.state = 0;

This is required before opening a file when using non-blocking mode in order to indicate that the file is not
in use. Only do this once. After you have opened the file, do not alter the contents of the file structure.

If fat_Open() succeeds we can go into the non-blocking section of the program: three costatements
inside an endless while loop. The benefit of using the non-blocking mode of the FAT file system is real-
ized when using costatements, an extension of Dynamic C that implements cooperative multitasking.
Instead of waiting while a function finishes its execution, the application can accomplish other tasks.

12.3.2.1 Costatement that Writes a File

The first costate is named putdata. It waits for one second and then creates a string to timestamp the
entry of a randomly generated number that is then appended to a file.

Note that the always_on keyword is used. This is required when using a named costatement to force it
to execute every time it is encountered in the execution thread (unless it is made inactive by a call to
CoPause()).

It is easy to suspend execution within a costate by using the waitfor keyword. The costate will relin-
quish control if the argument to waitfor (in this case a call to DelaySec()) evaluates to FALSE. The
next time the execution thread reaches putdata, waitfor will be called again. This will go on until
DelaySec() returns TRUE, i.e., when one second has elapsed from the time DelaySec() was first
called from within waitfor.

After the one second delay, the string to write to the file is placed in a buffer and a looping variable and
position pointer are initialized.

Before the buffer contents can be written to a file in the FAT file system, we must ensure that no collisions
occur since there is another costate that will attempt to read the file every ten seconds. A file can not be
read from and written to at the same time. In the following code the waitfor keyword is used with the
global variable filestate (defined at the top of the application) to implement a locking mechanism. As
soon as the file becomes available for putdata, it is marked unavailable for showdata.

while (1){
costate putdata always_on
{

waitfor (DelaySec(1)); // Wait for one second to elapse

sprintf(obuf, "%02d:%02d:%02d -- %6.3f \n", h, m, s, (25.0 * rand()));
ocount = 0;
optr = obuf;
 FAT File System rabbit.com 146

http://www.rabbit.com

The next block of code appends the latest entry into the file that was opened at the start of the application.

Again, waitfor is used to voluntarily relinquish control, this time while waiting for the write function to
complete. If an error occurs during the write operation the device is unmounted and the application exits.
Otherwise the loop counter and the buffer position pointer are advanced by the number of bytes actually
written. Since this can be less than the requested number of bytes, it is best to check in a loop such as the
while loop shown in putdata.

The last action taken by putdata is to reset filestate, indicating that the open file is available.

12.3.2.2 Costatement that Reads and Displays a File

The costatement named showdata waits for ten seconds. Then it waits for the open file to be available,
and when it is, immediately marks it as unavailable.

The next statement modifies the internal file position pointer. The first time this costate runs, readto is
zero, meaning the position pointer is at the first byte of the file. The variable readto is incremented
every time a record is read from the file, allowing showdata to always know where to seek to next.

The rest of showdata is a while loop inside of a while loop. The inner while loop is where each
record is read from the file into the buffer and then displayed in the Stdio window with the printf()
call. Since fat_Read() may return less than the requested number of bytes, the while loop is needed
to make sure that the function will be called repeatedly until all bytes have been read. When the full record
has been read, it will then be displayed to the Stdio window.

waitfor (filestate == 0); // Wait until file is available
filestate = 1; // Show file is being updated

while (ocount < REC_LEN){ // Loop until entire record is written
waitfor((rc = fat_Write(&file, optr, REC_LEN - ocount))!= -EBUSY);
if (rc < 0){

printf("fat_Write: rc = %d\n",rc);
while ((rc = fat_UnmountDevice(first_part->dev)) == -EBUSY);
return rc;

}
optr += rc; // Move output pointer
ocount += rc; // Add number of characters written

}
filestate = 0; // Show file is idle

}

costate showdata always_on{
waitfor (DelaySec(10));
waitfor (filestate == 0);
filestate = 2;

waitfor (fat_Seek(&file, readto, SEEK_SET) != -EBUSY);
 FAT File System rabbit.com 147

http://www.rabbit.com

The outer while loop controls when to stop reading records from the file. After the last record is read, the
fat_Read() function is called once more, returning an end-of-file error. This causes the if statements
that are checking for this error to return TRUE, which resets filestate to zero, breaking out of the
outer while loop and freeing the lock for the putdata costatement to use.

The other costatement in the endless while loop is the one that blinks the LED. It illustrates that while
using the file system in non-blocking mode, there is still plenty of time for other tasks.

while (filestate){
icount = 0;

iptr = ibuf;
while (icount < REC_LEN) {

waitfor((rc = fat_Read(&file, iptr, REC_LEN-icount)) != -EBUSY);
if (rc < 0)
{

 if (rc == -EEOF)
 {

filestate = 0;
break;

 }
 printf("fat_Read: rc = %d\n",rc);
 while ((rc=fat_UnmountDevice(first_part->dev)) == -EBUSY);

return rc;
}
iptr += rc;
icount += rc;

} // end of inner while loop
if (filestate)
{

printf("%s", ibuf);
readto += REC_LEN;

}
} // end of outer while loop
 FAT File System rabbit.com 148

http://www.rabbit.com

12.4 FAT Operations

12.4.1 Format and Partition the Device
The flash device must be formatted before its first use. Formatting it after its first use may destroy infor-
mation previously placed on it.

12.4.1.1 Default Partitioning

As a convenience, Samples/FileSystem/Fmt_Device.c is provided to format the flash device.
This program can format individual FAT 12/16 partitions, or can format all FAT 12/16 partitions found on
a device. If no FAT 12/16 partitions are found, it offers the option of erasing the entire device and format-
ting it with a single FAT 16 partition. Be aware that this will destroy any data on the device, including that
contained on FAT 32 partitions. This is an easy way to format new media that may contain an empty
FAT32 partition spanning the entire device, such as a new SD or XD card.

After the device has been formatted with Fmt_Device.c, an application that wants to use the FAT file
system just has to call the function fat_Init() (replaced in FAT version 2.01) or
fat_AutoMount(). If you are calling fat_AutoMount() refer to Section 12.2.1 for an example of
its use. Note that if you call fat_AutoMount() using the configuration flag FDDF_DEV_FORMAT,
you may not need to run Fmt_Device.c.

12.4.1.2 Creating Multiple Partitions

To create multiple partitions on the flash device use the sample program FAT_Write_MBR.c, which
will allow you to easily create as many as four partitions. This program does require that the device be
“erased” before being run. This can be done with the appropriate sample program:
sdflash_inspect.c, sflash_inspect.c or nflash_inspect.c. You only need to clear the
first three pages on SD cards or serial flash, or the first page on NAND flash or XD cards. Once this is
done, run FAT_Write_MBR and it will display the total size of the device in MegaBytes and allow you to
specify the size of each partition until all the space is used. If you specify an amount larger than the space
remaining, then all remaining space will be used for that partition. Once all space is specified, it will ask
approval to write the new partition structure. This utility does not format the partitions, it merely creates
their definitions. Run Fmt_device.c afterwards and use the 0 or 1 option to format the full device and
all partitions will be formatted. Be forewarned that on removable media, using multiple partitions will typ-
ically make the device unusable with PC readers.

The sample program FAT_Write_MBR.c is distributed with FAT version 2.13. It is also compatible
with FAT versions 2.01, 2.05 and 2.10. If you have one of these earlier versions of the FAT and would like
a copy of FAT_Write_MBR.c, please contact Technical Support either by email to support@rabbitsemi-
conductor.com or by using the online form: www.rabbit.com/support/questionSubmit.shtml.

There is a way to create multiple partitions without using the utility FAT_Write_MBR.c; this auxiliary
method is explained in Section 12.5.3.5.
 FAT File System rabbit.com 149

http://www.rabbit.com/support/questionSubmit.shtml
http://www.rabbit.com

12.4.1.3 Preserving Existing Partitions

If the flash device already has a valid partition that you want to keep, you must know where it is so you
can fit the FAT partition onto the device. This requires searching the partition table for both available parti-
tions and available space. An available partition has the partsecsize field of its mbr_part entry
equal to zero.

Look in lib/.../RCM3300/RemoteApplicationUpdate/downloadmanager.lib for the
function dlm_initserialflash() for an example of searching through the partition table for avail-
able partitions and space. See the next section for more information on the download manager (DLM) and
how to set up coexisting partitions.

12.4.1.4 FAT and DLM Partitions

The RabbitCore RCM3300 comes with a download manager utility that creates a partition on a serial flash
device, which is then used by the utility to remotely update an application. You can set up a device to have
both a DLM partition and a FAT partition.

Run the program Samples/RCM3300/RemoteApplicationUpdate/DLM_FAT_FORMAT.C.
This program must be run on an unformatted serial flash, i.e., a flash with no MBR. To remove an existing
MBR, first run the program Samples/RCM3300/SerialFlash/SFLASH_INSPECT.C to clear
the first three pages.

The program DLM_FAT_FORMAT.C will set aside space for the DLM partition and use the rest of the
device to create a FAT partition. Then, when you run the DLM software, it will be able to find space for its
partition and will coexist with the FAT partition. This shows the advantage to partitions: Partitions set hard
boundaries on the allocation of space on a device, thus neither FAT nor the DLM software can take space
from the other.
 FAT File System rabbit.com 150

http://www.rabbit.com

12.4.2 File and Directory Operations
The Dynamic C FAT implementation supports the basic set of file and directory operations. Remember
that a partition must be mounted before it can be used with any of the file, directory or status operations.

12.4.2.1 Open and Close Operations

The fat_Open() function opens a file or a directory. It can also be used to create a file or a directory.
When using the non-blocking FAT, check the return code and call it again with the same arguments until it
returns something other than -EBUSY.

The first parameter, my_part, points to a partition structure. This pointer must point to a mounted parti-
tion. Some of the sample programs, like fat_create.c, declare a local pointer and then search for a
partition pointer in the global array fat_part_mounted[]. Other sample programs, like
fat_shell.c, define an integer to be used as an index into fat_part_mounted[]. Both methods
accomplish the same goal of gaining access to a partition pointer.

The second parameter contains the file name, including the directory (if applicable) relative to the root
directory. All paths in Dynamic C must specify the full directory path explicitly, e.g., DIR1\\FILE.EXT

or DIR1/FILE.EXT. The direction of the slash in the pathname is a backslash by default. If you use the
default backslash for the path separator, you must always precede it with another backslash, as shown in
the above call to fat_Open(). This is because the backslash is an escape character in a Dynamic C
string. To use the forward slash as the path separator, define the macro FAT_USE_FORWARDSLASH in
your application (or in FAT.LIB to make it the system default).

The third parameter determines whether a file or directory is opened (FAT_FILE or FAT_DIR).

The fourth parameter is a flag that limits fat_Open() to the action specified. FAT_CREATE creates the
file (or directory) if it does not exist. If the file does exist, it will be opened, and the position pointer will be
set to the start of the file. If you write to the file without moving the position pointer, you will overwrite
existing data. Use FAT_MUST_CREATE if you know the file does not exist; this last option is also a fail-
safe way to avoid opening and overwriting an existing file since an -EEXIST error message will be
returned if you attempt to create a file that already exists.

The fifth parameter, &my_file, is an available file handle. After a file or directory is opened, its handle
is used to identify it when using other API functions, so be wary of using local variables as your file han-
dle.

The final parameter is an initial byte count if the object needs to be created. It is only used if the
FAT_CREATE or FAT_MUST_CREATE flag is used and the file or directory does not already exist. The
byte count is rounded up to the nearest whole number of clusters greater than or equal to 1. On return, the
variable prealloc is updated to the number of bytes allocated. Pre-allocation is used to set aside space
for a file, or to speed up writing a large amount of data as the space allocation is handled once.

Pass NULL as the final parameter to indicate that you are opening the file for reading or that a minimum
number of bytes needs to be allocated to the file at this time. If the file does not exist and you pass NULL,
the file will be created with the minimum one cluster allocation.

rc = fat_Open(my_part, "DIR\\FILE.TXT", FAT_FILE, FAT_CREATE,
&my_file, &prealloc);
 FAT File System rabbit.com 151

http://www.rabbit.com

Once you are finished with the file, you must close it to release its handle so that it can be reused the next
time a file is created or opened.

Remember to check the return code from fat_Close() since an error return code may indicate the loss
of data. Once you are completely finished, call fat_UnmountDevice() to make sure any data stored
in the cache is written to the flash device.

12.4.2.2 Read and Write Operations

Use fat_Read() to read a file.

The first parameter, &my_file, is a pointer to the file handle already opened by fat_Open(). The
parameter buf points to a buffer for reading the file. The sizeof(buf) parameter is the number of
bytes to be read into the buffer. It does not have to be the full size of the buffer. If the file contains fewer
than sizeof(buf) characters from the current position to the end-of-file marker (EOF), the transfer
will stop at the EOF. If the file position is already at the EOF, 0 is returned. The maximum number of char-
acters read is 32767 bytes per call.

The function returns the number of characters read or an error code. Characters are read beginning at the
current position of the file. If you have just written to the file that is being read, the file position pointer
will be where the write left off. If this is the end of the file and you want to read from the beginning of the
file you must change the file position pointer. This can be done by closing the file and reopening it, thus
moving the position pointer to the start of the file. Another way to change the position pointer is to use the
fat_Seek() function. This function is explained in Section 12.4.2.3.

Use fat_ReadDir() to read a directory. This function is explained in Section 12.4.2.5.

Use fat_Write() or fat_xWrite() to write to a file. The difference between the two functions is
that fat_xWrite() copies characters from a string stored in extended memory.

The first parameter, &my_file, is a pointer to the file handle already opened by fat_Open(). Because
fat_Open() sets the position pointer to the start of the file, you will overwrite any data already in the
file. You will need to call fat_Seek() if you want to start the write at a position other than the start of
the file (see Section 12.4.2.3).

The second parameter contains the data to write to the file. Note that \r\n (carriage return, line feed)
appear at the end of the string in the function. This is essentially a FAT (or really, DOS) convention for text
files. It is good practice to use these standard line-end conventions. (If you only use \n, the file will read
just fine on Unix systems, but some DOS-based programs may have difficulties.) The third parameter
specifies the number of characters to write. Select this number with care since a value that is too small will
result in your data being truncated, and a value that is too large will append any data that already exists
beyond your new data.

rc = fat_Close(&my_file);

rc = fat_Read(&my_file, buf, sizeof(buf));

rc = fat_Write(&my_file, "Write data\r\n", 12);
 FAT File System rabbit.com 152

http://www.rabbit.com

Remember that once you are finished with a file you must close it to release its handle. You can call the
fat_Close() function, or, if you are finished using the file system on a particular partition, call
fat_UnmountPartition(), which will close any open files and then unmount the partition. If you
are finished using the device, it is best to call fat_UnmountDevice(), which will close any open FAT
files on the device and unmount all mounted FAT partitions. Unmounting the device is the safest method
for shutting down after using the device.

12.4.2.3 Going to a Specified Position in a File

The position pointer is at the start of the file when it is first opened. Two API functions, fat_Tell()
and fat_Seek(), are available to help you with the position pointer.

The fat_Tell() function does not change the position pointer, but reads its value (which is the number
of bytes from the beginning of the file) into the variable pointed to by &pos. Zero indicates that the posi-
tion pointer is at the start of the file. The first parameter, &my_file, is the file handle already opened by
fat_Open().

The fat_Seek() function changes the position pointer. Clusters are allocated to the file if necessary, but
the position pointer will not go beyond the original end of file (EOF) unless doing a SEEK_RAW. In all
other cases, extending the pointer past the original EOF will preallocate the space that would be needed to
position the pointer as requested, but the pointer will be left at the original EOF and the file length will not
be changed. If this occurs, the error code -EEOF is returned to indicate the space was allocated but the
pointer was left at the EOF. If the position requires allocating more space than is available on the device,
the error code -ENOSPC is returned.

The first parameter passed to fat_Seek() is the file handle that was passed to fat_Open(). The sec-
ond parameter, pos, is a long integer that may be positive or negative. It is interpreted according to the
value of the third parameter. The third parameter must be one of the following:

• SEEK_SET - pos is the byte position to seek, where 0 is the first byte of the file. If pos is less than 0,
the position pointer is set to 0 and no error code is returned. If pos is greater than the length of the file,
the position pointer is set to EOF and error code -EEOF is returned.

• SEEK_CUR - seek pos bytes from the current position. If pos is less than 0 the seek is towards the
start of the file. If this goes past the start of the file, the position pointer is set to 0 and no error code is
returned. If pos is greater than 0 the seek is towards EOF. If this goes past EOF the position pointer is
set to EOF and error code -EEOF is returned.

• SEEK_END - seek to pos bytes from the end of the file. That is, for a file that is x bytes long, the state-
ment:

fat_Seek (&my_file, -1, SEEK_END);

will cause the position pointer to be set at x-1 no matter its value prior to the seek call. If the value of
pos would move the position pointer past the start of the file, the position pointer is set to 0 (the start of
the file) and no error code is returned. If pos is greater than or equal to 0, the position pointer is set to
EOF and error code -EEOF is returned.

fat_Tell(&my_file, &pos);
fat_Seek(&my_file, pos, SEEK_SET);
 FAT File System rabbit.com 153

http://www.rabbit.com

• SEEK_RAW - is similar to SEEK_SET, but if pos goes beyond EOF, using SEEK_RAW will set the file
length and the position pointer to pos. This adds whatever data exists on the allocated space onto the
end of the file..
 FAT File System rabbit.com 154

http://www.rabbit.com

12.4.2.4 Creating Files and Subdirectories

While the fat_Open() function is versatile enough to not only open a file but also create a file or a sub-
directory, there are API functions specific to the tasks of creating files and subdirectories.

The fat_CreateDir() function is used to create a subdirectory one level at a time.

The first parameter, my_part, points to a partition structure. This pointer must point to a mounted parti-
tion. Some of the sample programs, like fat_create.c, declare a local pointer and then search for a
partition pointer in the global array fat_part_mounted[]. Other sample programs, like
fat_shell.c, define an integer to be used as an index into fat_part_mounted[]. Both methods
accomplish the same goal of gaining access to a partition pointer.

The second parameter contains the directory or subdirectory name relative to the root directory. If you are
creating a subdirectory, the parent directory must already exist.

Once DIR1 is created as the parent directory, a subdirectory may be created, and so on.

Note that a forward slash is used in the pathname instead of a backslash. Either convention may be used.
The backslash is used by default. To use a forward slash instead, define FAT_USE_FORWARDSLASH in
your application or in FAT.LIB.

A file can be created using the fat_CreateFile() function. All directories in the path must already
exist.

The first parameter, my_part, points to the static partition structure set up by fat_AutoMount().

The second parameter contains the file name, including the directories (if applicable) relative to the root
directory. All paths in the FAT library are specified relative to the root directory.

The third parameter indicates the initial number of bytes to pre-allocate. At least one cluster will be allo-
cated. If there is not enough space beyond the first cluster for the requested allocation amount, the file will
be allocated with whatever space is available on the partition, but no error code will be returned. If no clus-
ters can be allocated, the -ENOSPC error code will return. Use NULL to indicate that no bytes need to be
allocated for the file at this time. Remember that pre-allocating more than the minimum number of bytes
necessary for storage will reduce the available space on the device.

The final parameter, &my_file, is a file handle that points to an available file structure. If NULL is
entered, the file will be closed after it is created.

rc = fat_CreateDir(my_part, "DIR1");

rc = fat_CreateDir(my_part, "DIR1/SUBDIR");

rc = fat_CreateFile(my_part, "DIR1/SUBDIR/FILE.TXT", &prealloc,
&my_file);
 FAT File System rabbit.com 155

http://www.rabbit.com

12.4.2.5 Reading Directories

The fat_ReadDir() function reads the next directory entry from the specified directory. A directory
entry can be a file, directory or a label. A directory is treated just like a file.

The first parameter specifies the directory; &dir is an open file handle. A directory is opened by a call to
fat_OpenDir() or by passing FAT_DIR in a call to fat_Open(). The second parameter,
&dirent, is a pointer to a directory entry structure to fill in. The directory entry structure must be
declared in your application, for example:

fat_dirent dirent;

Search Conditions

The last parameter, mode, determines which directory entry is being requested, a choice that is built from
a combination of the macros described below. To understand the possible values for mode, the first thing
to know is that a directory entry can be in one of three states: empty, active or deleted. This means you
must choose one of the default flags described below, or one or more of the following macros:

• FAT_INC_ACTIVE - include active entries. This is the default setting if other FAT_INC_* macros
are not specified; i.e., active files are included unless FAT_INC_DELETED, FAT_INC_EMPTY, or
FAT_INC_LNAME is set.

• FAT_INC_DELETED - include deleted entries

• FAT_INC_EMPTY - include empty entries

• FAT_INC_LNAME - include long name entries (this is included for completeness, but is not used since
long file names are not supported)

The above macros narrow the search to only those directory entries in the requested state. The search is
then refined further by identifying particular attributes of the requested entry. This is done by choosing one
or more of the following macros:

• FATATTR_READ_ONLY - include read-only entries

• FATATTR_HIDDEN - include hidden entries

• FATATTR_SYSTEM - include system entries

• FATATTR_VOLUME_ID - include label entries

• FATATTR_DIRECTORY - include directory entries

• FATATTR_ARCHIVE - include modified entries

Including a FATATTR_* macro means you do not care whether the corresponding attribute is turned on or
off. Not including a FATATTR_* macro means you only want an entry with that particular attribute turned
off. Note that the FAT system sets the archive bit on all new files as well as those written to, so including
FATATTR_ARCHIVE in your mode setting is a good idea.

For example, if mode is (FAT_INC_ACTIVE) then the next directory entry that has all of its attributes
turned off will be selected; i.e., an entry that is not read only, not hidden, not a system file, not a directory
or a label, and not archived. In other words, the next writable file that is not hidden, system or already
archived is selected.

fat_ReadDir(&dir, &dirent, mode);
 FAT File System rabbit.com 156

http://www.rabbit.com

But, if you want the next active file and do not care about the file’s other attributes, mode should be
(FAT_INC_ACTIVE | FATATTR_READ_ONLY | FATATTR_HIDDEN | FATATTR_SYSTEM
| FATATTR_ARCHIVE). This search would only exclude directory and label entries.

Now suppose you want only the next active read-only file, leaving out hidden or system files. The next
group of macros allows this search by filtering on whether the requested attribute is set. The filter macros
are:

• FAT_FIL_RD_ONLY - filter on read-only attribute

• FAT_FIL_HIDDEN - filter on hidden attribute

• FAT_FIL_SYSTEM - filter on system attribute

• FAT_FIL_LABEL - filter on label attribute

• FAT_FIL_DIR - filter on directory attribute

• FAT_FIL_ARCHIVE - filter on modified attribute

If you set mode to (FAT_INC_ACTIVE | FATATTR_READ_ONLY | FAT_FIL_RD_ONLY |
FATATTR_ARCHIVE), the result will be the next active file that has its read-only attribute set (and has
the archive attribute in either state).

NOTE: If you have FAT version 2.05 or earlier, you do not have access to the
FAT_FIL_* macros.

Default Search Flags

To make things easier, there are two predefined mode flags. Each one may be used alone or in combination
with the macros already described.

• FAT_INC_ALL - selects any directory entry of any type.

• FAT_INC_DEF - selects the next active file or directory entry, including read-only or archived files.
No hidden, system, label, deleted, or empty directories or files will be selected. This is typically what
you see when you do a directory listing on your PC.

Search Flag Examples

Here are some more examples of how the flags work.

1. If you want the next hidden file or directory:

Start with the FAT_INC_DEF macro default flag. This flag does not allow hidden files, so we need
FATATTR_HIDDEN. Then to narrow the search to consider only a hidden file or directory, we need
the macro FAT_FIL_HIDDEN to filter on files or directories that have the hidden attribute set. That
is, mode is set to:

FAT_INC_DEF | FATATTR_HIDDEN | FAT_FIL_HIDDEN

2. If you want the next hidden directory:

Start with the FAT_INC_DEF macro default flag. To narrow the search to directories only, we want
entries with their directory attribute set; therefore, OR the macros FATATTR_DIRECTORY and
FAT_FIL_DIR. Then OR the macros FATATTR_HIDDEN and FAT_FIL_HIDDEN to search only
for directories with their hidden attribute set. Set mode to:

FAT_INC_DEF | FATATTR_DIRECTORY | FAT_FIL_DIR | FATATTR_HIDDEN |
FAT_FIL_HIDDEN
 FAT File System rabbit.com 157

http://www.rabbit.com

3. If you want the next hidden file (no directories):

Start with the predefined flag, FAT_INC_DEF. This flag allows directories, which we do not want, so
we do an AND NOT of the FATATTR_DIRECTORY macro.

Next we want to narrow the search to only entries that have their hidden attribute set. The default flag
does not allow hidden flags, so we need to OR the macros FATTR_HIDDEN and
FAT_FIL_HIDDEN.

That is, set mode to:

FAT_INC_DEF & ~FATATTR_DIRECTORY | FATATTR_HIDDEN |
FAT_FIL_HIDDEN

4. If you want the next non-hidden file (no directories):

First, select the FAT_INC_DEF filter default flag. This flag allows directories, which we do not want,
so we do an AND NOT of the FATATTR_DIRECTORY macro. The default flag already does not
allow hidden files, so we are done. That is, set mode to:

FAT_INC_DEF & ~FATATTR_DIRECTORY

5. Finally let’s see how to get the next non-empty entry of any type.

Start with the predefined flag, FAT_INC_ALL. This flag selects any directory entry of any type. Since
we do not want empty entries, we have to remove that search condition from the flag, so we do an
AND NOT for the FAT_INC_EMPTY macro to filter out the empty entries. That means mode is the
bitwise combination of the macros:

mode = FAT_INC_ALL & ~FAT_INC_EMPTY

12.4.2.6 Deleting Files and Directories

The fat_Delete() function is used to delete a file or directory. The second parameter sets whether a
file or directory is being deleted. Only one file or directory may be deleted at any one time—this means
that you must call fat_Delete() at least twice to delete a file and its associated directory (if the direc-
tory has no other files or subdirectories since a directory must be empty to be deleted).

The first parameter, my_part, points to the static partition structure that was populated by
fat_AutoMount(). The second parameter is the file type, FAT_FILE or FAT_DIR, depending on
whether a file or a directory is to be deleted. The third parameter contains the file name, including the
directory (if applicable) relative to the directory root. All paths in the FAT library are specified relative to
the root directory.

fat_Delete(my_part, FAT_FILE, "DIR/FILE.TXT");
 FAT File System rabbit.com 158

http://www.rabbit.com

Error Handling

Most routines in the FAT library return an int value error code indicating the status of the requested opera-
tion. Table 2 contains a list of error codes specific to the FAT file system. These codes, along with other
error codes an application may encounter, are defined in \Lib\Rabbit4000\ERRNO.LIB.

Table 2. FAT-Specific Error Codes

Code Value Description

EFATMUTEX 300 FAT Mutex error (uC/OS).

EROOTFULL 301 Root directory full.

ENOPART 302 Not partitioned.

EBADPART 303 Partition bad or unrecognized.

EUNFORMAT 304 Partition or volume not formatted.

ETYPE 305 Bad type.

EPATHSTR 306 Bad file/directory path string.

EBADBLOCK 307 Block marked bad on the device.

EBADDATA 308 Error detected in read data.

EDRVBUSY 309 Driver level is busy, new write not started.

EUNFLUSHABLE 310

Cannot flush enough entries from cache to
perform next read. There are pending dirty
cache entries from a previous boot. Register all
devices and this may go away. If not, there are
dirty entries for a removable medium, which is
not mounted. In this case, call
fatwtc_flushdev() with the unregister flag.

EMISMATCH 311

Parameter mismatch when registering a device.
The device had outstanding cache entries from
previous boot, but the caller is attempting to
change the cusize (cache unit size) or
removable status.

EDEVNOTREG 312
Internal error: device not registered when
_fatwtc_devwrite called.

EPARTIALWRITE 313
Internal error: not writing full physical sector in
_fatwtc_devwrite.

EJOVERFLOW 314

Rollback journal overflow. Transaction requires
too much data to be stored. Either increase
FAT_MAXRJ in the BIOS, or review calling
code to make sure transactions are terminated at
the right time and do not journal unnecessary
data.
 FAT File System rabbit.com 159

http://www.rabbit.com

ETRANSOPEN 315
fatrj_transtart() called with transaction already
open.

EBROKENTIE 316
Internal error: a tied cache group is in an
inconsistent state.

ETRANSNOTOPEN 317
fatrj_setchk() called without transaction being
open.

ECMCONFLICT 318
Transaction cannot contain both checkpoint and
marker data.

EFSTATE 319
File is in an invalid state. Probably because the
FATfile structure was not zero when opened for
the first time.

EPSTATE 320
Partition is in an invalid state. This occurs if
you are trying to delete a file when another file
is being allocated, or vice versa.

ECORRUPT 321 FAT filesystem appears to be corrupted.

Table 2. FAT-Specific Error Codes

Code Value Description
 FAT File System rabbit.com 160

http://www.rabbit.com

12.5 More FAT Information
The FAT file system stores and organizes files on a storage device such as a hard drive or a memory
device.

12.5.1 Clusters and Sectors
Every file is stored on one or more clusters. A cluster is made up of a contiguous number of bytes called
sectors and is the smallest unit of allocation for files. The Dynamic C FAT implementation supports a sec-
tor size of 512 bytes. Cluster sizes depend on the media. The table below gives the cluster sizes used for
some of our RabbitCore modules.

The cluster size for a NAND device corresponds to its page size. Note that a file or directory takes at mini-
mum one cluster. On a NAND device the page size is 16K bytes; therefore, while it is allowable to write
very small files to the FAT file system on a NAND device, it is not space efficient. Even the smallest file
takes at least 16,000 bytes of storage. Cluster sizes for SD cards vary with the size of the card inserted. To
determine the number of sectors per cluster on an SD card, divide the size of the card by 32MB.

12.5.2 The Master Boot Record
The master boot record (MBR) is located on one or more sectors at the physical start of the device. Its
basic structure is illustrated in Figure 3. The boot region of the MBR contains DOS boot loader code,
which is written when the device is formatted (but is not otherwise used by the Dynamic C FAT file sys-
tem). The partition table follows the boot region. It contains four 16-byte entries, which allows up to four
partitions on the device. Partition table entries contain some critical information: the partition type
(Dynamic C FAT recognizes partition types FAT12 and FAT16) and the partition’s starting and ending sec-
tor numbers. There is also a field denoting the total number of sectors in the partition. If this number is
zero, the corresponding partition is empty and available.

Table 3. Cluster Sizes on Flash Devices

RabbitCore Model Flash Device
Number of Sectors

per Cluster

RCM 3700 1 MB Serial Flash 1

RCM 3300 4 and 8 MB Serial Flash 2

RCM3360/70 NAND Flash 32
 FAT File System rabbit.com 161

http://www.rabbit.com

Figure 3. High-Level View of an MBR

NOTE: Some devices are formatted without an MBR and, therefore, have no parti-
tion table. This configuration is not currently supported in the Dynamic C FAT file
system.

12.5.3 FAT Partitions
The first sector of a valid FAT file system partition contains the BIOS parameter block (BPB); this is fol-
lowed by the file allocation table (FAT), and then the root directory. The figure below shows a device with
two FAT partitions.

Figure 4. Two FAT Partitions on a Device
 FAT File System rabbit.com 162

http://www.rabbit.com

12.5.3.1 BPB

The fields of the BPB contain information describing the partition:

• the number of bytes per sector

• the number of sectors per cluster (see Table 3)

• the total count of sectors on the partition

• the number of root directory entries

• plus additional information not mentioned here

The FAT type (FAT12 or FAT16) is determined by the count of clusters on the partition. The “12” and “16”
refer to the number of bits used to hold the cluster number. The FAT type is calculated using information
found in the BPB. Information from a BPB on a mounted partition is stored in the partition structure (of
type fat_part) populated by fat_AutoMount().

Partitions greater than or equal to 2 MB will be FAT16. Smaller partitions will be FAT12. To save code
space, you can compile out support for either FAT type. Find the lines

#define FAT_FAT12 // comment out to disable FAT12 support
#define FAT_FAT16 // comment out to disable FAT16 support

in LIB/../FAT.LIB, make your change, and then recompile your application.

12.5.3.2 FAT

The file allocation table is the structure that gives the FAT file system its name. The FAT stores informa-
tion about cluster assignments. A cluster is either assigned to a file, is available for use, or is marked as
bad. A second copy of the FAT immediately follows the first.

12.5.3.3 Root Directory

The root directory has a predefined location and size. It has 512 entries of 32 bytes each. An entry in the
root directory is either empty or contains a file or subdirectory name (in 8.3 format), file size, date and
time of last revision and the starting cluster number for the file or subdirectory.

12.5.3.4 Data Area

The data area takes up most of the partition. It contains file data and subdirectories. Note that the data area
of a partition must, by convention, start at cluster 2.

12.5.3.5 Creating Multiple FAT Partitions

FAT version 2.13 introduces FAT_Write_MBR.c, a utility that simplifies the creation of multiple parti-
tions. (See Section 12.4.1.2 for information on running this utility.) It is distributed with FAT version 2.13.
It is also compatible with FAT versions 2.01, 2.05 and 2.10. If you have one of these earlier versions of the
FAT and would like a copy of FAT_Write_MBR.c, please contact Technical Support either by email to
support@rabbitsemiconductor.com or by using the online form: www.rabbit.com/support/questionSub-
mit.shtml.

Without the use of FAT_Write_MBR.c, creating multiple FAT partitions on the flash device requires a
little more effort than the default partitioning. If the flash device does not contain an MBR, i.e., the device
is not formatted, both fat_Init() and fat_AutoMount() return an error code (-EUNFORMAT)
 FAT File System rabbit.com 163

http://www.rabbit.com
http://www.rabbit.com/support/questionSubmit.shtml
http://www.rabbit.com/support/questionSubmit.shtml

indicating this fact. So the next task is to write the MBR to the device. This is done with a call to
fat_FormatDevice(). Since we want more than one partition on the flash device,
fat_FormatDevice() must be called with a mode parameter of zero.

Before calling fat_FormatDevice(), partition specific information must be set in the mbr_part
entries for each partition you are creating. The following code shows possible information for partition 0
where MY_PARTITION_SIZE is equal to the size of the desired partition in bytes, 512 is the flash sector
size, and dev points to the mbr_part structure.

The memset() function is used to initialize the entry to zero. The values for starthead and
endhead should be 0xFE to indicate that the media uses LBA (Logical Block Addressing) instead of
head and cylinder addressing. The FAT library uses LBA internally. The values for the startsector,
partsecsize and parttype fields determine where the partition starts, how many sectors it contains
and what partition type it is. The number of sectors in the partition is calculated by dividing the number of
raw bytes in the partition by the sector size of the flash. The number of raw bytes in the partition includes
not only bytes for file storage, but also the space needed by the BPB and the root directory. One is added to
dev->partsecsize to ensure an extra sector is assigned if MY_PARTITION_SIZE is not evenly
divisible by the size of a flash sector. The partition type (.parttype) is determined by the partition size:
1 indicates FAT12 and 6 indicates FAT16. Fill in an mbr_part structure for each partition you are creat-
ing. The remaining entries should be zeroed out.

When laying out partitions, there are three basic checks to make sure the partitions fit in the available
device space and do not overlap.

1. No partition can start on a sector less than 1.

2. Each partition resides on sectors from startsector throughstartsector+partsecsize-
1. No other partition can have a startsector value within that range.

3. No partition ending sector (startsector+partsecsize-1) can be greater than or equal to
the total sectors on the device.

The partition boundaries are validated in the call to fat_FormatDevice() and the function will
return an error if any of the partition boundaries are invalid. If fat_FormatDevice() returns success,
then call fat_AutoMount() with flags of FDDF_COND_PART_FORMAT | FDDF_MOUNT_DEV_# |
FDDF_MOUNT_PART_ALL; where # is the device number for the device being partitioned. This will for-
mat and mount the newly created partitions.

memset(dev->part, 0, sizeof(mbr_part));
dev->part[0].starthead = 0xFE;
dev->part[0].endhead = 0xFE;
dev->part[0].startsector = 1;
dev->part[0].partsecsize = (MY_PARTITION_SIZE / 512) + 1;
dev->part[0].parttype = (dev->part[0].partsecsize < SEC_2MB) ? 1 : 6;
 FAT File System rabbit.com 164

http://www.rabbit.com

12.5.4 Directory and File Names
File and directory names are limited to 8 characters followed by an optional period (.) and an extension of
up to 3 characters. The characters may be any combination of letters, digits, or characters with code point
values greater than 127. The following special characters are also allowed:

$ % ' - _ @ ~ ` ! () { } ^ # &

File names passed to the file system are always converted to upper case; the original case value is lost.

The maximum size of a directory is limited by the available space. It is recommended that no more than
ten layers of directories be used with the Dynamic C FAT file system.

12.5.5 µC/OS-II and FAT Compatibility
Versions of the FAT file system prior to version 2.10 are compatible with µC/OS-II only if FAT API calls
are confined to one µC/OS-II task. To make the FAT API reentrant from multiple tasks, you must do the
following:

• Use FAT version 2.10

• #define FAT_USE_UCOS_MUTEX before #use'ing FAT.LIB

• Call the function fat_InitUCOSMutex(priority) after calling OSInit() and before calling
FAT APIs or beginning multitasking; the parameter “priority” MUST be a higher priority than all tasks
using FAT APIs

• Call only high-level fat APIs with names that begin with “fat_”

See the function description for fat_InitUCOSMutex() for more details, and the sample program
Samples/FileSystem/FAT_UCOS.C for a demonstration of using FAT with µC/OS-II.

12.5.6 SF1000 and FAT Compatibility
There are two macros that need to be defined for the FAT to work with the SF1000 Serial Flash Expansion
Board.

#define SF_SPI_DIVISOR 5
#define SF_SPI_INVERT_RX

12.5.7 Hot-Swapping an xD Card
Hot-swapping is currently supported on the RCM3365 and the RCM3375. FAT version 2.10 or later is
required. Two sample programs are provided in Samples/FileSystem to demonstrate this feature:
FAT_HOT_SWAP.C and FAT_HOT_SWAP_3365_75.C. The samples are mostly identical: they both
test for a keyboard hit to determine if the user wants to hot-swap the xD card, but, in addition, the sample
program FAT_HOT_SWAP_3365_75.C also checks for a switch press and indicates a ready-to-mount
condition with an LED.

After unmounting the xD card call _fat_config_init(). This disconnects drive and device struc-
tures from internal tables to work around a potential problem swapping from smaller to larger removable
devices.
 FAT File System rabbit.com 165

http://www.rabbit.com

As demonstrated in the sample programs, an xD card should only be removed after it has unmounted with
fat_UnmountDevice() and no operations are happening on the device.

Only fat_AutoMount() should be used to remount xD cards. In addition, the function
nf_XD_Detect() should be called to verify xD card presence before attempting to remount an xD
card.

xD cards formatted with versions of the FAT prior to 2.10 did not have unique volume labels. If there is a
chance that two such cards may be swapped, call fat_autoMount() with the FDDF_NO_RECOVERY
flag set. This means that if there is a write cache entry to be written, it will not be written. The function
fat_UnmountDevice() flushes the cache (i.e., writes all cache entries to the device) before unmount-
ing, so this should not generally be a problem if the device was properly unmounted.

12.5.8 Hot-Swapping an SD Card
Hot-swapping is currently supported on the RCM3900 and the RCM3910. FAT version 2.14 or later is
required. A sample program is provided in Samples/FileSystem to demonstrate this feature:
FAT_HOT_SWAP_SD.C. The sample tests for a keyboard hit to determine if the user wants to hot-swap
the SD card.

Hot-swapping an SD card requires that you unmount the device before removal, as the FAT filesystem
employs a cache system that may not have written all information to the device unless unmounted.

As demonstrated in the sample program, the SD card should only be removed after it has unmounted with
fat_UnmountDevice() and no operations are happening on the device. Only fat_AutoMount()
should be used to remount SD cards. In addition, the function sdspi_debounce() should be called to
verify SD card presence before attempting to remount an SD card.

12.5.9 Unsupported FAT Features
At this time, the Dynamic C FAT file system does not support the following.

• Single-volume drives (they do not have an MBR)

• FAT32 or long file or directory names

• Sector sizes other than 512 bytes

• Direct parsing of relative paths

• Direct support of a “working directory”

• Drive letters (the FAT file system is not DOS)
 FAT File System rabbit.com 166

http://www.rabbit.com

12.5.10 References
There are a number of good references regarding FAT file systems available on the Internet. Any reason-
able search engine will bring up many hits if you type in relevant terms, such as “FAT,” “file system,” “file
allocation table,” or something along those lines. At the time of this writing, the following links provided
useful information.

• This link is to Microsoft’s “FAT32 File System Specification,” which is also applicable to FAT12 and
FAT16.

www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx

• This article gives a brief history of FAT.

http://en.wikipedia.org/wiki/File_Allocation_Table

• These tutorials give plenty of details plus links to more information:

www.pcguide.com/ref/hdd/file/fat.htm

www.serverwatch.com/tutorials/article.php/2239651
Dynamic C User’s Manual rabbit.com 167

http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx
http://en.wikipedia.org/wiki/File_Allocation_Table
http://www.pcguide.com/ref/hdd/file/fat.htm
http://www.rabbit.com
http://www.serverwatch.com/tutorials/article.php/2239651

 13. USING ASSEMBLY LANGUAGE

This chapter gives the rules for mixing assembly language with Dynamic C code. A reference guide to the
Rabbit Instruction Set is available from the Help menu of Dynamic C and is also documented in the Rabbit
Microprocessor Instruction Reference Manual available on the Rabbit website:

www.rabbitsemiconductor.com/docs/

13.1 Mixing Assembly and C
Dynamic C permits assembly language statements to be embedded in C functions and/or entire functions
to be written in assembly language. C statements may also be embedded in assembly code. C-language
variables may be accessed by the assembly code.

13.1.1 Embedded Assembly Syntax
Use the #asm and #endasm directives to place assembly code in Dynamic C programs. For example, the
following function will add two 64-bit numbers together. The same program could be written in C, but it
would be many times slower because C does not provide an add-with-carry operation (adc).

The keywords debug and nodebug can be placed on the same line as #asm. Assembly code blocks are
nodebug by default. This saves space and unnecessary calls to the debugger kernel.

All blocks of assembly code within a C function are assembled in nodebug mode. The only exception to
this is when a block of assembly code is explicitly marked with debug. Any blocks marked debug will
be assembled in debug mode even if the enclosing C function is marked nodebug.

void eightadd(char *ch1, char *ch2){
#asm

ld hl,(sp+@SP+ch2) ; get source pointer
ex de,hl ; save in register DE
ld hl,(sp+@SP+ch1) ; get destination pointer
ld b,8 ; number of bytes
xor a ; clear carry
loop:
ld a,(de) ; ch2 source byte
adc a,(hl) ; add ch1 byte
ld (hl),a ; store result to ch1 address
inc hl ; increment ch1 pointer
inc de ; increment ch2 pointer
djnz loop ; do 8 bytes
; ch1 now points to 64 bit result

#endasm
}

Dynamic C User’s Manual rabbit.com 168

http://www.rabbitsemiconductor.com/docs/
http://www.rabbit.com

13.1.2 Embedded C Syntax
A C statement may be placed within assembly code by placing a “c” in column 1. Note that the registers
used in the embedded C statement will be changed.

13.1.3 Setting Breakpoints in Assembly
There are two ways to enable software breakpoint support in assembly code.

One way is to explicitly mark the assembly block as debug (the default condition is nodebug). This
causes the insertion of RST 0x28 instructions between each assembly instruction. These RST 0x28
instructions may cause jump relative (i.e., jr) instructions to go out of range, but this problem can be
solved by changing the relative jump (jr) to an absolute jump (jp). Below is an example.

#asm debug
function::
...
ret
#endasm

The other way to enable breakpoint support in a block of assembly code is to add a C statement before the
desired assembly instruction. Note that the assembly code must be contained in a debug C function to
enable C code debugging. Below is an example.

debug dummyfunction() {
#asm
function::
...
label:
...
c ; // add line of C code to permit a breakpoint before jump relative
jr nc, label
ret
#endasm

}

NOTE: Single stepping through assembly code is always allowed if the assem-
bly window is open.

Dynamic C 10.21 introduces support for the hardware breakpoint capability available with the Rabbit 4000
microprocessor. For more information on hardware breakpoints refer to Section 14 and Section 16.5 in this
manual and/or the microprocessor user’s manual specific to your Rabbit (e.g., Rabbit 4000 Microprocessor
User’s Manual).

#asm
InitValues::
c start_time = 0;
c counter = 256;

ret
#endasm
 Using Assembly Language rabbit.com 169

http://www.rabbit.com

13.1.4 Assembly and 32-bit Pointer Registers (PW, PX, PY, PZ)
Assembly programmers should note that far variables defined in C are interpreted as physical addresses
by the assembler and near variables are interpreted as segmented logical addresses. Specifically, the
instruction:

ld pd, klmn ; where pd is a 32-bit pointer register, and klmn is a 32-bit constant

does not work as would first be expected if used with a variable. For example, the following code snippet
illustrates the problem:

Example (prints ‘Y’ not ‘X’ as may be expected):

char far * ptr;
char far foo;

int main()
{

foo = 'Y';
ptr = &foo;

#asm
; The following code is INCORRECT!!!
ld px, ptr ; ptr is in root, so px gets segmented version of ptr’s address
ld a, 'X'
ld (px), a ; This does NOT store register a’s contents to the address “&ptr” (i.e., foo)

#endasm

printf("%c\n", foo);
}

The incorrect code shown above illustrates how a programmer might write inline assembly to access a
variable via a pointer. However, since the assembler treats near addresses as logical addresses, the format
of the value produced by loading the variable “ptr” directly into a pointer register is not correct for the sub-
sequent store instruction. To correctly implement the assembly in the above sample, do the following:

#asm
;Corrected version of incorrect code above
ldl px, ptr ; ptr is in root, so load low word to a 32-bit register

; (high word is loaded with 0xFFFF to flag root address)
ld px, (px) ; this loads foo’s far physical address
ld a, 'X'
ld (px), a

#endasm

Replacing the first assembly block with the above listing will produce the expected result of printing “X.”
The “ldl” instruction correctly loads the root address of “ptr” into px, making the subsequent “ld” instruc-
tion load foo’s far physical address into px. The above code has the virtue of being not only correct, but
also small (11 bytes), fast (24 clocks) and spartan with regard to its register requirements (only 2 registers
are needed).

Like the “ldl” instruction, the instructions “convc” and “convd” also convert logical addresses, though not
to the equivalent physical address, but rather to the offset into the physical device.
 Using Assembly Language rabbit.com 170

http://www.rabbit.com

13.2 Assembler and Preprocessor
The assembler parses most C language constant expressions. A C language constant expression is one whose
value is known at compile time. All operators except the following are supported:

13.2.1 Comments
C-style comments are allowed in embedded assembly code. The assembler will ignore comments begin-
ning with:

; text from the semicolon to the end of line is ignored.
// text from the double forward slashes to the end of line is ignored.
/* text between slash-asterisk and asterisk-slash is ignored */

13.2.2 Defining Constants
Constants may be created and defined in assembly code with the assembly language keyword db (define
byte). db should be followed immediately by numerical values and strings separated by commas. For
example, each of the following lines define the string “ABC”.

db 'A', 'B', 'C'
db "ABC"
db 0x41, 0x42, 0x43

The numerical values and characters in strings are used to initialize sequential byte locations.

If separate I&D space is enabled, assembly constants should either be put in their own assembly block
with the const keyword or be done in C.

#asm const
myrootconstants::
db 0x40, 0x41, 0x42

#endasm

or

const char myrootconstants[] = {‘\x40’, ‘\x41’, ‘\x42’}

Table 13-1. Operators Not Supported By The Assembler

Operator Symbol Operator Description

?: conditional

. dot

-> points to

* dereference
 Using Assembly Language rabbit.com 171

http://www.rabbit.com

If separate I&D space is enabled, db places bytes in the base segment of the data space when it is used
with const. If the const keyword is absent, i.e.,

the bytes are placed somewhere in the instruction space. If separate I&D space is disabled (the default con-
dition), the bytes are placed in the base segment (aka, root segment) interspersed with code.

Therefore, so that data will be treated as data when referenced in assembly code, the const keyword
must be used when separate I&D space is enabled. For example, this won't work correctly without const:

The assembly language keyword dw defines 16-bit words, least significant byte first. The keyword dw
should be followed immediately by numerical values:

This example defines three constants. The first two constants are literals, and the third constant is the
address of variable xyz.

The numerical values initialize sequential word locations, starting at the current code address.

#asm
myrootconstants::
db 0x40, 0x41, 0x42

#endasm

#asm const
label::

db 0x5a
#endasm

main(){
;

#asm
ld a,(label) // ld 0x5a to reg a

#endasm
}

dw 0x0123, 0xFFFF, xyz
 Using Assembly Language rabbit.com 172

http://www.rabbit.com

13.2.3 Multiline Macros
The Dynamic C preprocessor has a special feature to allow multiline macros in assembly code. The pre-
processor expands macros before the assembler parses any text. Putting a $\ at the end of a line inserts a
new line in the text. This only works in assembly code. Labels and comments are not allowed in multiline
macros.

13.2.4 Labels
A label is a name followed by one or two colons. A label followed by a single colon is local, whereas one
followed by two colons is global. A local label is not visible to the code out of the current embedded
assembly segment (i.e., code before the #asm or after the #endasm directive is outside of that embbeded
assembly segment).

Unless it is followed immediately by the assembly language keyword equ, the label identifies the current
code segment address. If the label is followed by equ, the label “equates” to the value of the expression
after the keyword equ.

Because C preprocessor macros are expanded in embedded assembly code, Rabbit recommends that pre-
processor macros be used instead of equ whenever possible.

#define SAVEFLAG $\
ld a,b $\
push af $\
pop bc

#asm
...
ld b,0x32
SAVEFLAG
...

#endasm
 Using Assembly Language rabbit.com 173

http://www.rabbit.com

13.2.5 Special Symbols
This table lists special symbols that can be used in an assembly language expression.

13.2.6 C Variables
C variable names may be used in assembly language. What a variable name represents (the value associ-
ated with the name) depends on the variable. For a global or static local variable, the name represents the
address of the variable in root memory. For an auto variable or formal argument, the variable name rep-
resents its own offset from the frame reference point.

The following list of processor register names are reserved and may not be used as C variable names in
assembly: A, B, C, D, E, F, H, L, AF, HL, DE, BC, IX, IY, SP, PC, XPC, IP, IIR and EIR. The Rabbit 4000
has additional processor register names that are reserved: JK, PX, PY, PZ, PW, BCDE, JKHL, SU and
HTR. Both upper and lower case instances are reserved for processor register names.

The name of a structure element represents the offset of the element from the beginning of the structure. In
the following structure, for example,

struct s {
 int x;
 int y;
 int z;
};

the embedded assembly expression s+x evaluates to 0, s+y evaluates to 2, and s+z evaluates to 4,
regardless of where structure “s” may be.

In nested structures, offsets can be composite, as shown here.

struct s{ // offset into s
int x; // 0
struct a { // 2 (i.e., sizeof(x))

int b; // 2, offset is 0 relative to a
int c; // 4, offset is 2 relative to a

};
};

Table 13-2. Special Assembly Language Symbols

Symbol Description

@SP
Indicates the amount of stack space (in bytes) used for stack-based
variables. This does not include arguments.

@PC

Constant for the current code location. For example:

ld hl, @PC

loads the code address of the instruction. ld hl,@PC+3 loads the address
after the instruction since it is a 3 byte instruction.

@RETVAL
Evaluates the offset from the frame reference point to the stack space
reserved for the struct function returns. See Section 13.3.3.2 for
more information on the frame reference point.

@LENGTH Determines the next reference address of a variable plus its size.
 Using Assembly Language rabbit.com 174

http://www.rabbit.com

Just like in the first definition of structure “s”, the assembly expression s+x evaluates to 0; s+a evaluates to
2 and s+b evaluates to 2 (both expressions evaluate to the same value because both “a” and “b” are offset
“0” from “a”); and finally, s+c evaluates to 4 because s+a evaluates to 2 and a+c evaluates to 2.

13.3 Stand-Alone Assembly Code
A stand-alone assembly function is one that is defined outside the context of a C language function.

A stand-alone assembly function has no auto variables and no formal parameters. It can, however, have
arguments passed to it by the calling function. When a program calls a function from C, it puts the first
argument into a primary register. If the first argument has one or two bytes (int, unsigned int,
char, pointer), the primary register is HL (with register H containing the most significant byte). If
the first argument has four bytes and is not a pointer (long, unsigned long, float), the primary
register is BC:DE (with register B containing the most significant byte). If the first argument is a four byte
pointer (far *), the primary register is PX. Assembly-language code can use the first argument very effi-
ciently. Only the first argument is put into the primary register, while all arguments—including the first,
pushed last—are pushed on the stack.

C function values return in the primary register, if they have four or fewer bytes, either in HL , BC:DE, or
PX.

Assembly language allows assumptions to be made about arguments passed on the stack, and auto vari-
ables can be defined by reserving locations on the stack for them. However, the offsets of such implicit
arguments and variables must be kept track of. If a function expects arguments or needs to use stack-based
variables, Rabbit recommends using the embedded assembly techniques described in the next section.
 Using Assembly Language rabbit.com 175

http://www.rabbit.com

13.3.1 Stand-Alone Assembly Code in Extended Memory
Stand-alone assembly functions may be placed in extended memory by adding the xmem keyword as a
qualifier to #asm, as shown below. Care needs be taken so that branch instructions do not jump beyond
the current xmem window. To help prevent such bad jumps, the compiler limits xmem assembly blocks to
4096 bytes. Code that branches to other assembly blocks in xmem should always use ljp or lcall.

13.3.2 Example of Stand-Alone Assembly Code
The stand-alone assembly function foo() can be called from a Dynamic C function.

The entire program can be written in assembly.

Embedded Assembly Code

When embedded in a C function, assembly code can access arguments and local variables (either auto or
static) by name. Furthermore, the assembly code does not need to manipulate the stack because the
functions prolog and epilog already do so.

#asm xmem
main::
...
lcall fcn_in_xmem
...
lret
#endasm

#asm xmem
fcn_in_xmem::
...
lret
#endasm

int foo (int); // A function prototype can be declared for stand-alone
// assembly functions, which will cause the compiler
// to perform the appropriate type-checking.

main(){
int i,j;
i=1;
j=foo(i);

}

#asm
foo::
...
ld hl,2 // The return value expected by main() is put
ret // in HL just before foo() returns
#endasm

#asm
main::
...
ret
#endasm
 Using Assembly Language rabbit.com 176

http://www.rabbit.com

13.3.3 The Stack Frame
The purpose and structure of a stack frame should be understood before writing embedded assembly code.
A stack frame is a run-time structure on the stack that provides the storage for all auto variables, function
arguments and the return address for a particular function. If the IX register is used for a frame reference
pointer, the previous value of IX is also kept in the stack frame.

13.3.3.1 Stack Frame Diagram

Figure 13.1 shows the general appearance of a stack frame.

Figure 13.1 Assembly Code Stack Frame

The return address is always necessary. The presence of auto variables depends on the function definition.
The presence of arguments and structure return space depends on the function call. (The stack pointer may
actually point lower than the indicated mark temporarily because of temporary information pushed on the
stack.)

The shaded area in the stack frame is the stack storage allocated for auto variables. The assembler sym-
bol @SP represents the size of this area.

13.3.3.2 The Frame Reference Point

The frame reference point is a location in the stack frame that immediately follows the function’s return
address. The IX register may be used as a pointer to this location by putting the keyword useix before
the function, or the request can be specified globally by the compiler directive #useix. The default is
#nouseix. If the IX register is used as a frame reference pointer, its previous value is pushed on the
stack after the function’s return address. The frame reference point moves to encompass the saved IX
value.
 Using Assembly Language rabbit.com 177

http://www.rabbit.com

13.3.4 Embedded Assembly Example
The purpose of the following sample program, asm1.c, is to show the different ways to access stack-
based variables from assembly code.

void func(char ch, int i, long lg);

main(){
char ch;
int i;
long lg;

ch = 0x11;
i = 0x2233;
lg = 0x44556677L;
func(ch,i,lg);

}

void func(char ch, int i, long lg){
auto int x;
auto int z;

x = 0x8888;
z = 0x9999;

#asm
// This is equivalent to the C statement: x = 0x8888
ld hl, 0x8888
ld (sp+@SP+x), hl

// This is equivalent to the C statement: z = 0x9999
ld hl, 0x9999
ld (sp+@SP+z), hl

// @SP+i gives the offset of i from the stack frame on entry.
// On the Rabbit, this is how HL is loaded with the value in i.
ld hl,(sp+@SP+i)

// This works if func() is useix; however, if the IX register
// has been changed by the user code, this code will fail.
ld hl,(ix+i)

// This method works in either case because the assembler adjusts the
// constant @SP, so changing the function to nouseix with the keyword
// nouseix, or the compiler directive #nouseix will not break the code.
// But, if SP has been changed by user code, (e.g., a push) it won't work.
ld hl,(sp+@SP+lg+2)
ld b,h
ld c,L
ld hl,(sp+@SP+lg)
ex de,hl

#endasm
}

 Using Assembly Language rabbit.com 178

http://www.rabbit.com

13.3.5 The Disassembled Code Window
A program may be debugged at the assembly level by opening the Disassembled Code window (aka, the
Assembly window). Single stepping and breakpoints are supported in this window. When the “Disassem-
bled Code” window is open, single stepping occurs instruction by instruction rather than statement by
statement. The figure below shows the “Disassembled Code” window for the example code, asm1.c.

Figure 13.2 Disassembled Code Window

The Disassembled Code window shows the memory address on the far left, followed by the opcode bytes,
followed by the mnemonics for the instruction. The last column shows the number of cycles for the
instruction, assuming no wait states. The total cycle time for a block of instructions will be shown at the
bottom of the window when the block is selected. The total assumes one execution per instruction, so the
user must take looping and branching into consideration when evaluating execution times.
 Using Assembly Language rabbit.com 179

http://www.rabbit.com

13.3.6 Local Variable Access
Accessing static local variables is simple because the symbol evaluates to the address directly. The follow-
ing code shows, for example, how to load static variable y into HL.

 13.3.6.1 Using the IX Register as a Frame Pointer

Using IX as a frame pointer is a convenient way to access stack variables in assembly. Using SP requires
extra bookkeeping when values are pushed on or popped off the stack.

Now, access to stack variables is easier. Consider, for example, how to load ch into register A.

The IX+offset load instruction takes 9 clock cycles and opcode is three bytes. If the program needs to load
a four-byte variable such as lg, the IX+offset instructions are as follows.

This takes a total of 24 cycles.

The offset from IX is a signed 8-bit integer. To use IX+offset, the variable must be within +127 or –128
bytes of the frame reference point. The @SP method is the only method for accessing variables out of this
range. The @SP symbol may be used even if IX is the frame reference pointer.

 13.3.6.2 Using Index Registers as Pointers to Aggregate Types

The members of Dynamic C aggregate types (structures and unions) can be accessed from within a block
of assembly code using any of the index registers:

• IX, IY, SP (available on all Rabbit processors)

• PW, PX, PY or PZ (available on the Rabbit 4000+)

The assembly notation for accessing a member of a structure or union is:

 (index_register + [aggregate_type_reference] + member_name)

where aggregate_type_reference may be any one of a typedef for, an instance of, or a pointer to an instance
of the aggregate type. If member_name is an aggregate type (e.g. a nested structure) then members of the
nested aggregate type are accessed as follows:

 (index_register + [aggregate_type_reference] + member_name + member_of_member_name)

where member_of_member_name is a member of struct member_name which is itself a member of the
aggregate_type_reference. To access additional levels of nested structures, add "+ member_name" as nec-
essary.

ld hl,(y) ; load hl with contents of y

ld a,(ix+ch) ; a <-- ch

ld hl,(ix+lg+2) ; load LSB of lg
ld b,h ; longs are normally stored in BC:DE
ld c,L
ld hl,(ix+lg) ; load MSB of lg
ex de,hl
 Using Assembly Language rabbit.com 180

http://www.rabbit.com

The following Rabbit 4000+ example illustrates assembly code access of both near data and far data in
both a base structure and its nested structure, using a mix of struct typedef, struct pointer and struct
instance references:

typedef struct {
 int x;
 int y;
} TNest;

typedef struct {
 TNest nest;
 long time;
} TStruct;

void func(TStruct *s, TStruct far *t)
{
#asm nodebug
 ; e.g. use IY to access near (root) data:
 ld iy, (sp+@SP+s)
 ld hl, (iy+[TStruct]+nest+y)
; . . .
 ; e.g. use PW to access far data:
 ld pw, (sp+@SP+t)
 ld bcde, (pw+[t]+time)
; . . .
#endasm
}

void main(void)
{
 auto TStruct s_local;
 static far TStruct t_local;

 _n_memset(&s_local, 0, sizeof s_local);
 s_local.nest.y = 0x1234;

 _f_memset(&t_local, 0, sizeof t_local);
 t_local.time = 0x12345678;

 func(&s_local, &t_local);

#asm nodebug
 ; e.g. use IY to access near (root) data:
 ld iy, @SP+s_local
 add iy, sp
 ld hl, (iy+[s_local]+nest+y)
; . . .
 ; e.g. use PW to access far data:
 Using Assembly Language rabbit.com 181

http://www.rabbit.com

 ld pw, t_local
 ld bcde, (pw+[t_local]+time)
; . . .
 ; e.g. use PW to access near (root) data:
 ld hl, @SP+s_local
 add hl, sp
 ldl pw, hl
 ld hl, (pw+[t_local]+nest+y)
; . . .
#endasm
}

 13.3.6.3 Functions in Extended Memory

If the xmem keyword is present, Dynamic C compiles the function to extended memory. Otherwise, Dynamic C
determines where to compile the function. Functions compiled to extended memory have a 3-byte return address
instead of a 2-byte return address.

Because the compiler maintains the offsets automatically, there is no need to worry about the change of
offsets. The @SP approach discussed previously as a means of accessing stack-based variables works
whether a function is compiled to extended memory or not, as long as the C-language names of local vari-
ables and arguments are used.

A function compiled to extended memory can use IX as a frame reference pointer as well. This adds an
additional two bytes to argument offsets because of the saved IX value. Again, the IX+offset approach dis-
cussed previously can be used because the compiler maintains the offsets automatically.

13.4 C Calling Assembly
Dynamic C does not assume that registers are preserved in function calls. In other words, the function
being called need not save and restore registers.

13.4.1 Passing Parameters
When a program calls a function from C, it puts the first argument into HL (if it has one or two bytes) with
register H containing the most significant byte. If the first argument has four bytes, it goes in BC:DE (with
register B containing the most significant byte). Only the first argument is put into the primary register,
while all arguments—including the first, pushed last—are pushed on the stack.
 Using Assembly Language rabbit.com 182

http://www.rabbit.com

13.4.2 Location of Return Results
 If a C-callable assembly function is expected to return a result (of primitive type), the function must pass
the result in the “primary register.” If the result is an int, unsigned int, char, or a pointer, return
the result in HL (register H contains the most significant byte). If the result is a long, unsigned
long, or float, return the result in BCDE (register B contains the most significant byte). A C function
containing embedded assembly code may, of course, use a C return statement to return a value. A
stand-alone assembly routine, however, must load the primary register with the return value before the
ret instruction.

13.4.3 Returning a Structure
In contrast, if a function returns a structure (of any size), the calling function reserves space on the stack
for the return value before pushing the last argument (if any). Dynamic C functions containing embedded
assembly code may use a C return statement to return a value. A stand-alone assembly routine, how-
ever, must store the return value in the structure return space on the stack before returning.

Inline assembly code may access the stack area reserved for structure return values by the symbol
@RETVAL, which is an offset from the frame reference point.

The following code shows how to clear field f1 of a structure (as a returned value) of type struct s.

It is crucial that @SP be added to @RETVAL because @RETVAL is an offset from the frame reference
point, not from the current SP.

typedef struct ss {
int f0; // first field
char f1; // second field

} xyz;
xyz my_struct;

...
my_struct = func();

...
xyz func(){
#asm

...
xor a ; clear register A.
ld hl,@SP+@RETVAL+ss+f1 ; hl <- the offset from SP to f1 field of returned struct
add hl,sp ; hl now points to f1.
ld (hl),a ; load a (now 0) to f1.
...

#endasm
}

 Using Assembly Language rabbit.com 183

http://www.rabbit.com

13.5 Assembly Calling C
A program may call a C function from assembly code. To make this happen, set up part of the stack frame
prior to the call and “unwind” the stack after the call. The procedure to set up the stack frame is described
here.

1. Save all registers that the calling function wants to preserve. A called C function may change the
value of any register. (Pushing registers values on the stack is a good way to save their values.)

2. If the function return is a struct, reserve space on the stack for the returned structure. Most func-
tions do not return structures.

3. Compute and push the last argument, if any.

4. Compute and push the second to last argument, if any.

5. Continue to push arguments, if there are more.

6. Compute and push the first argument, if any. Also load the first argument into the primary register
(HL for int, unsigned int, char, and pointers, or BCDE for long, unsigned
long, and float) if it is of a primitive type.

7. Issue the call instruction.

The caller must unwind the stack after the function returns.

1. Recover the stack storage allocated to arguments. With no more than 6 bytes of arguments, the pro-
gram may pop data (2 bytes at time) from the stack. Otherwise, it is more efficient to compute a new
SP instead. The following code demonstrates how to unwind arguments totaling 36 bytes of stack
storage.

2. If the function returns a struct, unload the returned structure.

3. Restore registers previously saved. Pop them off if they were stored on the stack.

4. If the function return was not a struct, obtain the returned value from HL or BCDE.

13.6 Interrupt Routines in Assembly
Interrupt Service Routines (ISRs) may be written in Dynamic C (declared with the keyword interrupt). But
since an assembly routine may be more efficient than the equivalent C function, assembly is more suitable
for an ISR. Even if the execution time of an ISR is not critical, the latency of one ISR may affect the
latency of other ISRs.

Either stand-alone assembly code or embedded assembly code may be used for ISRs. The benefit of
embedding assembly code in a C-language ISR is that there is no need to worry about saving and restoring
registers or reenabling interrupts. The drawback is that the C interrupt function does save all registers,
which takes some amount of time. A stand-alone assembly routine needs to save and restore only the regis-
ters it uses.

; Note that HL is changed by this code!
; Use “ex de,hl” to save HL if HL has the return value
;;;ex de,hl ; save HL (if required)

ld hl,36 ; want to pop 36 bytes
add hl,sp ; compute new SP value
ld sp,hl ; put value back to SP

;;;ex de,hl ; restore HL (if required)
 Using Assembly Language rabbit.com 184

http://www.rabbit.com

13.6.1 Steps Followed by an ISR
The CPU loads the Interrupt Priority register (IP) with the priority of the interrupt before the ISR is called.
This effectively turns off interrupts that are of the same or lower priority. Generally, the ISR performs the
following actions:

1. Save all registers that will be used, i.e., push them on the stack. Interrupt routines written in C save
all registers automatically. Stand-alone assembly routines must push the registers explicitly.

2. Push and pop the LXPC as a defensive programming strategy to avoid corrupting large memory
support. For example, the LCALL instruction clears the LXPC so it is essential that this register is
saved before issuing an LCALL and restored after the LRET.

3. Determine the cause of the interrupt. Some devices map multiple causes to the same interrupt vec-
tor. An interrupt handler must determine what actually caused the interrupt.

4. Remove the cause of the interrupt.

5. If an interrupt has more than one possible cause, check for all the causes and remove all the causes
at the same time.

6. When finished, restore registers saved on the stack. Naturally, this code must match the code that
saved the registers. Interrupt routines written in C perform this automatically. Stand-alone assembly
routines must pop the registers explicitly.

7. Restore the interrupt priority level so that other interrupts can get the attention of the CPU. ISRs
written in C restore the interrupt priority level automatically when the function returns. However,
stand-alone assembly ISRs must restore the interrupt priority level explicitly by calling ipres.

The interrupt priority level must be restored immediately before the return instructions ret or
reti. If the interrupts are enabled earlier, the system can stack up the interrupts. This may or
may not be acceptable because there is the potential to overflow the stack.

8. Return. There are two types of interrupt returns: ret and reti.

The value in IP is shown in the status bar at the bottom of the Dynamic C window. If a breakpoint is
encountered, the IP value shown on the status bar reflects the saved context of IP from just before the
breakpoint.

13.6.2 Modifying Interrupt Vectors
This section will discuss how to modify the interrupt vectors after they have been set up. For detailed
information about how the interrupt vectors are set up and operate, please see the Rabbit 4000 Designer’s
Handbook.

Users can modify interrupt vector code under all program models in one of two ways

• Reading the interrupt CPU registers directly (IER and EIR)

• Using the configuration macros (INTVEC_BASE and XINTVEC_BASE)

As noted, the 8-bit CPU registers are called IIR and EIR corresponding to internal interrupts and external
interrupts, respectively. Likewise, the macros are called INTVEC_BASE and XINTVEC_BASE. When
Rabbit's BIOS finishes initial tasks, the macros and registers correlate directly. Therefore, if a user applica-
tion does not modify the interrupt vector registers then that user may employ the macros for the entire pro-
gram execution. If the application alters the interrupt vector registers during execution (not recommended
practice), however, the application must use the values of those registers instead of the macros.
 Using Assembly Language rabbit.com 185

http://www.rabbit.com

For detailed information on the operation of interrupt vectors, consult the chip manual for your board, e.g.,
The Rabbit 4000 Microprocessor User’s Manual. The remainder of this section explains how to modify
interrupt vectors after initialization.

In C, the user can modify interrupt vectors through SetVectIntern() and SetVectExtern(). In
assembly, the user accomplishes the same through INTVEC_BASE + <vector offset> or
XINTVEC_BASE + <vector offset>. The possible values for <vector offset> are defined as macros in
lib\..\bioslib\sysio.lib, listed below for convenience:

Table 13-3. Internal Interrupts and their Offset from INTVEC_BASE

INPUTCAP_OFS SERC_OFS

NETA_OFS SERD_OFS

PERIODIC_OFS SERE_OFS

PWM_OFS SERF_OFS

QUAD_OFS SLAVE_OFS

RST10_OFS SLV_OFS

RST18_OFS SMV_OFS

RST20_OFS SYSCALL_OFS

RST28_OFS TIMERA_OFS

RST38_OFS TIMERB_OFS

SECWD_OFSS TIMERC_OFS

SERA_OFS WPV_OFS

SERB_OFS

Table 13-4. External Interrupts and their
Offset from XINTVEC_BASE

BKPT_OFS DMA5_OFS

DMA0_OFS DMA6_OFS

DMA1_OFS DMA7_OFS

DMA2_OFS EXT0_OFS

DMA3_OFS EXT1_OFS

DMA4_OFS
 Using Assembly Language rabbit.com 186

http://www.rabbit.com

The following code fragments set up the interrupt service routine for the timer B interrupt:

#asm
;*** Dynamic Method ***
clr hl
ld a, iir
ld h, a
ld de, TIMERB_OFS ; Load offset of interrupt
add hl, de
ld de, 0xC3 | timerb_isr << 8 ; Jump opcode and LSB of address.
Ld bc, timerb_isr >> 8 ; MSB of address
ld (hl), bcde

#endasm

#asm
;*** Static Method ***
ld a, 0xC3 ; Jump opcode
ld hl, timerb_isr ; Service routine
ld (INTVEC_BASE + PERIODIC_OFS), a
ld (INTVEC_BASE + PERIODIC_OFS + 1), hl

#endasm

The static method shown above is equivalent to using SetVectIntern() or SetVectExtern(),
although these functions perform more safety checks that writing assembly code would circumvent. Please
see the Dynamic C Function Reference Manual for more information on using SetVectIntern() and
SetVectExtern().
 Using Assembly Language rabbit.com 187

http://www.rabbit.com

13.7 Common Problems
If you have problems with your assembly code, consider the possibility of any of the following situations:

• Unbalanced stack
Ensure the stack is “balanced” when a routine returns. In other words, the SP must be same on exit as
it was on entry. From the caller’s point of view, the SP register must be identical before and after the
call instruction.

• Using the @SP approach after pushing temporary information on the stack
The @SP approach for inline assembly code assumes that SP points to the low boundary of the stack
frame. This might not be the case if the routine pushes temporary information onto the stack. The
space taken by temporary information on the stack must be compensated for.
The following code illustrates the concept.

; SP still points to the low boundary of the call frame
push hl ; save HL

; SP now two bytes below the stack frame!
...
ld hl,@SP+x+2 ; Add 2 to compensate for altered SP
add hl,sp ; compute as normal
ld a,(hl) ; get the content
...
pop hl ; restore HL

; SP again points to the low boundary of the call frame

• Registers not preserved
In Dynamic C, the caller is responsible for saving and restoring all registers. An assembly routine that
calls a C function must assume that all registers will be changed.
Unpreserved registers in interrupt routines cause unpredictable and unrepeatable problems. In contrast
to normal functions, interrupt functions are responsible for saving and restoring all registers them-
selves.

• Relocatable code
Jump relative (JR) instructions allow easier code relocation because the jump is relative to the current
program counter. For example, RAM functions are usually written in assembly and are relocated to
RAM from flash. A jump (JP) instruction would not work in this case because the jump would be to a
flash location and not the intended RAM location. Using JR instead of JP will jump to the intended
RAM location.
 Using Assembly Language rabbit.com 188

http://www.rabbit.com

 14. KEYWORDS

A keyword is a reserved word in C that represents a basic C construct. It cannot be used for any other pur-
pose.

abandon

Used in single-user cofunctions, abandon{} must be the first statement in the body of the cofunction.
The statements inside the curly braces will be executed only if the cofunction is forcibly abandoned and if
a call to loophead() is made in main() before calling the single-user cofunction. See
Samples\Cofunc\Cofaband.c for an example of abandonment handling.

abort

Jumps out of a costatement.

for(;;){
costate {

...
if(condition) abort;

}
...

}

align

Used in assembly blocks, the align keyword outputs a padding of nops so that the next instruction to be
compiled is placed at the boundary based on VALUE.

#asm
...
align <VALUE>
...
#endasm

VALUE can have any (positive) integer expression or the special operands even and odd. The operand
even aligns the instruction on an even address, and odd on an odd address. Integer expressions align on
multiples of the value of the expression.
Dynamic C User’s Manual rabbit.com 189

http://www.rabbit.com

Some examples:

align odd ; This aligns on the next odd address
align 2 ; Aligns on a 16-bit (2-byte) boundary
align 4 ; Aligns on a 32-bit (4-byte) boundary
align 100h ; Aligns the code to the next address that is evenly divisible by 0x100
align sizeof(int)+4 ; Complex expression, involving sizeof and integer constant

Note that integer expressions are treated the same way as operand expressions for other asm operators, so
variable labels are resolved to their addresses, not their values.

always_on

The costatement is always active. Unnamed costatements are always on.

anymem

Allows the compiler to determine in which part of memory a function will be placed.

anymem int func(){
...

}
#memmap anymem
#asm anymem

...
#endasm

asm

Use in Dynamic C code to insert one assembly language instruction. If more than one assembly instruction
is desired use the compiler directive #asm instead.

int func() {
int x,y,z;

asm ld hl,0x3333
...

}

 Keywords rabbit.com 190

http://www.rabbit.com

auto

A functions’s local variable is located on the system stack and exists as long as the function call does.

int func(){
auto float x;
...

}

bbram

IMPORTANT: bbram does not provide data integrity; instead, use the keyword protected to ensure integ-
rity of data across power failures.

Identifies a variable with static local or global extent/scope for storage in battery-backed RAM on boards
with more than one RAM device. Generally, the battery-backed RAM is attached to CS1 due to the low-
power requirements. Other than its assigned root or far data location, a bbram variable is identical to a nor-
mal root or far variable. In the case of a reset or power failure, the value of a bbram variable is preserved,
but not atomically like with protected variables. No software check is possible to ensure that the RAM is
battery-backed. This requirement must be enforced by the user. Note that bbram variables must have either
static or global storage.

For boards that utilize fast SRAM in addition to a battery-backed SRAM the size of the battery-backed
root data space is specified by a BIOS macro called BBROOTDATASIZE (default value is 4K). Note that
this macro is defined to zero for boards with only a single SRAM.

See the Rabbit 4000 Microprocessor Designer’s Handbook for information on how the second data area is
reserved.

On boards with a single RAM, bbram variables will be treated the same as normal root or far variables. No
warning will be given; the bbram keyword is simply ignored when compiling to boards with a single RAM
with the assumption that the RAM is battery-backed. Please refer to the function description for
_xalloc() for information on how to allocate battery-backed data in xmem.
 Keywords rabbit.com 191

http://www.rabbit.com

break

Jumps out of a loop, if, or case statement.

while(expression){
...
if(condition) break;

}
switch(expression){

...
case 3:

...
break;

...
}

c

Use in assembly block to insert one Dynamic C instruction.

#asm
InitValues::
c start_time = 0;
c counter = 256;

ld hl,0xa0;
ret

#endasm

case

Identifies the next case in a switch statement.

switch(expression){
case constant:

...
case constant:

...
case constant:

...

...
}

 Keywords rabbit.com 192

http://www.rabbit.com

char

Declares a variable or array element as an unsigned 8-bit character.

char c, x, *string = "hello";
int i;
...
c = (char)i; // type casting operator

cofunc

Indicates the beginning of a cofunction.

cofunc|scofunc type [name][[dim]]([type arg1, ..., type argN])
{ [statement | yield; | abort; | waitfor(expression);]... }{

...
}

cofunc, scofunc

The keywords cofunc or scofunc (a single-user cofunction) identify the statements enclosed in curly
braces that follow as a cofunction.

type

Whichever keyword (cofunc or scofunc) is used is followed by the data type returned (void, int,
etc.).

name

A name can be any valid C name not previously used. This results in the creation of a structure of type
CoData of the same name.

dim

The cofunction name may be followed by a dimension if an indexed cofunction is being defined.

cofunction arguments (arg1, . . ., argN)

As with other Dynamic C functions, cofunction arguments are passed by value.

cofunction body

A cofunction can have as many C statements, including abort, yield, waitfor, and waitfordone
statements, as needed. Cofunctions can contain calls to other cofunctions.
 Keywords rabbit.com 193

http://www.rabbit.com

const

This keyword declares that a value will be stored in flash, thus making it unavailable for modification.
const is a type qualifier and may be used with any static or global type specifier (char, int, struct,
etc.). The const qualifier appears before the type unless it is modifying a pointer. When modifying a
pointer, the const keyword appears after the “*.”

In each of the following examples, if const was missing the compiler would generate a trivial warning.
Warnings for const can be turned off by changing the compiler options to report serious warnings only.
The use of const is not currently permitted with return types, auto variables or parameters in a function
prototype.

Example 1:

Example 2:

Example 3:

Example 4:

Example 5:

NOTE: The default storage class is auto, so the above code would have to be
outside of a function or would have to be explicitly set to static.

// ptr_to_x is a constant pointer to an integer
int x;
int * const cptr_to_x = &x;

// cptr_to_i is a constant pointer to a constant integer
const int i = 3;
const int * const cptr_to_i = &i;

// ax is a constant 2 dimensional integer array
const int ax[2][2] = {{2,3}, {1,2}};

struct rec {
int a;
char b[10];

};

// zed is a constant struct
const struct rec zed = {5, “abc”};

// cptr is a constant pointer to an integer
typedef int * ptr_to_int;
const ptr_to_int cptr = &i;

// this declaration is equivalent to the previous one
int * const cptr = &i;
 Keywords rabbit.com 194

http://www.rabbit.com

continue

Skip to the next iteration of a loop.

while(expression){
if(nothing to do) continue;
...

}

costate

Indicates the beginning of a costatement.

costate [name [state]] {
...

}

Name can be absent. If name is present, state can be always_on or init_on. If state is absent,
the costatement is initially off.

debug

Indicates a function is to be compiled in debug mode. This is the default case for Dynamic C functions
with the exception of pure assembly language functions.

Library functions compiled in debug mode can be single stepped into, and breakpoints can be set in them.

debug int func(){
...

}
#asm debug

...
#endasm

The debug keyword in combination with the norst keyword will give you run-time checking without
debug. For example,

debug norst foo() {
}

will perform run-time checking if enabled, but will not have rst instructions.
 Keywords rabbit.com 195

http://www.rabbit.com

default

Identifies the default case in a switch statement. The default case is optional. It executes only when the
switch expression does not match any other case.

switch(expression){
case const1:

...
case const2:

...
default:

...
}

do

Indicates the beginning of a do loop. A do loops tests at the end and executes at least once.

do
...

while(expression);

The statement must have a semicolon at the end.

else

The false branch of an if statement.

if(expression)
statement // “statement” executes when “expression” is true

else
statement // “statement” executes when “expression” is false
 Keywords rabbit.com 196

http://www.rabbit.com

enum

Defines a list of named integer constants:

enum foo {
white, // default is 0 for the first item
black, // will be 1
brown, // will be 2
spotted = -2, // will be -2
striped, // will be -3

};

An enum can be declared in local or global scope. The tag foo is optional; but it allows further declara-
tions:

enum foo rabbits;

To see a colorful sample of the enum keyword, run /samples/enum.c.

extern

Indicates that a variable is defined in the BIOS, later in a library file, or in another library file. Its main use
is in module headers.

/*** BeginHeader ..., var */
extern int var;

/*** EndHeader */
int var;
...

far

This keyword, when used in a variable declaration, tells the compiler to allocate storage for that variable
from the far memory space (a.k.a. the physical address space). The far qualifier indicates that physical
addressing will be used with all occurrences of the variable. The far type qualifier may be used with any
static or global type specifier (char, int, struct, etc.). The far qualifier may appear before or after a basic
or aggregate type. When modifying a pointer, the far keyword appears after the “*” in the declaration.

The use of far is very similar to that of the const qualifier in that it may only be applied to global or
static variables. However, as shown in Example 1, far may come before or after the basic type (allowing
far after the type is compatible with some other compilers that support the far qualifier). An error will
be generated if far is applied to auto variables, function parameters, or function return values. This
restriction does not apply to pointer-to-far as shown in the examples below.
 Keywords rabbit.com 197

http://www.rabbit.com

Example 1

The exception is pointers—if a pointer to far is declared, as is shown in Example 2, it can be used any-
where a “normal” pointer may be used (including autos, parameters and return types). Example 2 also
shows how to place a pointer in xmem; as with const, the storage qualifier comes after the “*”, indicat-
ing that the pointer itself is in xmem. The pointers in the example are each 4 bytes, for the physical
addresses they represent (effective 24-bit physical address—see the Rabbit 4000 Designer’s Manual for
more information).

Example 2

You can also declare a pointer variable in xmem to a near (logical) address, as shown in Example 3. The
size of this pointer variable is 2 bytes – for the 16-bit logical address it represents, but the pointer itself is
in xmem.

Example 3

The far qualifier can also be used to put structures and arrays directly in xmem. In Example 4, we have a
structure defined, and followed by a declaration. The declaration uses the far qualifier to place the entire
structure in xmem. Also note that “far” is not allowed for individual structure members since this does not

// x is an integer variable in xmem
// y is also an integer variable in xmem
static far int x;
static int far y;

// The following is prohibited
static far int far z;

// x is an integer variable in xmem
// ptr_to_x is a pointer in root to an integer in xmem (pointer to far)
// far_ptr_to_x is a pointer in xmem to an integer in xmem

static far int x;
static far int * ptr_to_x = &x;
static far int * far far_ptr_to_x = &x;

// The following are allowed
far int * foo(){ … } // Returns pointer to far
void foo (far int * px) { … } // Takes pointer-to-far as a parameter
auto far int *x; // 4 byte pointer-to-far on stack

// The following are prohibited
far int foo(){ … }
void foo (far int x) { … }
auto far int x;

// x is a variable in root (may be auto or static)
// px, a pointer variable in xmem, points to an integer variable in root; px must be global or static
int x;
static int * far px = &x;
 Keywords rabbit.com 198

http://www.rabbit.com

make any sense. However, as in the case of function parameters and auto variables, pointers to far are
allowed (see Example 4). Note that arrays in xmem can be made much larger than root arrays and can be
indexed using long values in addition to integers.

Example 4

The far qualifier can be used in typedefs as well. In Example 5, we declare a typedef for a pointer-to-far
type, which can be further modified as shown.

Example 5

The keyword far can also be used in conjunction with const, allowing variables to be declared in the
xmem space in flash. Example 6 shows an example declaration of a far constant.

Example 6

NOTE: The default storage class is auto, so any of the above code not explic-
itly marked as static or auto (and not a pointer to far) would have to be
outside of a function or would have to be explicitly set to static.

struct rec {
int a;
char b[10];
far int *p; // This is allowed

// far int c; // This is not allowed
// int * far np; // This is also not allowed

};

// myrec is a struct in xmem
far struct rec myrec;

// array is an array of integers in xmem
far int array[4000];

// fptr is a pointer to an integer in xmem
typedef far int * far_ptr_to_int;
far_ptr_to_int fptr = &i;

// cptr is a pointer to an integer in xmem
typedef int * ptr_to_int;
far ptr_to_int cptr = &i;

// this declaration is equivalent to the previous two
far int * cptr = &i;

// c is a constant integer variable stored in xmem on the flash device
const far int cptr = 0x1234;
 Keywords rabbit.com 199

http://www.rabbit.com

firsttime

The keyword firsttime in front of a function body declares the function to have an implicit *CoData

parameter as the first parameter. This parameter should not be specified in the call or the prototype, but
only in the function body parameter list. The compiler generates the code to automatically pass the pointer
to the CoData structure associated with the costatement from which the call is made. A firstime
function can only be called from inside of a costatement, cofunction, or slice statement. The DelayTick
function from COSTATE.LIB below is an example of a firsttime function.

firsttime nodebug int DelayTicks(CoData *pfb, unsigned int ticks)
{

if(ticks==0) return 1;

if(pfb->firsttime){
fb->firsttime=0;

/* save current ticker */
fb->content.ul=(unsigned long)TICK_TIMER;

}
else if (TICK_TIMER - pfb->content.ul >= ticks)

return 1;

return 0;
}

float

Declares variables, function return values, or arrays, as 32-bit IEEE floating point.

int func(){
float x, y, *p;
float PI = 3.14159265;

...
}

float func(float par){
...

}

 Keywords rabbit.com 200

http://www.rabbit.com

for

Indicates the beginning of a for loop. A for loop has an initializing expression, a limiting expression,
and a stepping expression. Each expression can be empty.

for(;;) { // an endless loop
...

}
for(i = 0; i < n; i++) { // counting loop

...
}

goto

Causes a program to go to a labeled section of code.

...
if(condition) goto RED;
...

RED:

Use goto to jump forward or backward in a program. Never use goto to jump into a loop body or a
switch case. The results are unpredictable. However, it is possible to jump out of a loop body or
switch case.

if

Indicates the beginning of an if statement.

if(tank_full) shut_off_water();

if(expression){
statements

}else if(expression){
statements

}else if(expression){
statements

}else if(expression){
statements
...

}else{
statements

}

If one of the expressions is true (they are evaluated in order), the statements controlled by that expression
are executed. An if statement can have zero or more else if parts. The else is optional and executes
only when none of the if or else if expressions are true (non-zero).
 Keywords rabbit.com 201

http://www.rabbit.com

.init_on

The costatement is initially on and will automatically execute the first time it is encountered in the execu-
tion thread. The costatement becomes inactive after it completes (or aborts).

int

Declares variables, function return values, or array elements to be 16-bit integers. If nothing else is speci-
fied, int implies a 16-bit signed integer.

int i, j, *k; // 16-bit signed
unsigned int x; // 16-bit unsigned
long int z; // 32-bit signed
unsigned long int w; // 32-bit unsigned
int funct (int arg){

...
}

interrupt

Indicates that a function is an interrupt service routine (ISR). All registers, including alternates, are saved
when an interrupt function is called and restored when the interrupt function returns. Writing ISRs in C is
never recommended, especially when timing is critical.

interrupt isr (){
...

}

An interrupt service routine returns no value and takes no arguments.

__lcall__

When used in a function definition, the __lcall__ function prefix forces long call and return (lcall and
lret) instructions to be generated for that function, even if the function is in root. This allows root functions
to be safely called from xmem. In addition to root functions, this prefix also works with function pointers.
The __lcall__ prefix works safely with xmem functions, but has no effect on code generation. Its use
with cofunctions is prohibited and will generate an error if attempted.

root __lcall__ int foo(void) {
return 10; // Generates an lret instruction, even though we are in root

}

main() {
foo(); // This now generates an lcall instruction

}

 Keywords rabbit.com 202

http://www.rabbit.com

long

Declares variables, function return values, or array elements to be 32-bit integers. If nothing else is speci-
fied, long implies a signed integer.

long i, j, *k; // 32-bit signed
unsigned long int w; // 32-bit unsigned
long funct (long arg){

...
}

main

Identifies the main function. All programs start at the beginning of the main function. (main is actu-
ally not a keyword, but is a function name.)

nodebug

Indicates a function is not compiled in debug mode. This is the default for assembly blocks.

nodebug int func(){
...

}
#asm nodebug

...
#endasm

See also “debug” and directives “#debug #nodebug”.
 Keywords rabbit.com 203

http://www.rabbit.com

norst

Indicates that a function does not use the RST instruction for breakpoints.

norst void func(){
...

}

The norst keyword in combination with the debug keyword will give you run-time checking without
debug. For example,

debug norst foo() {
}

will perform runtime-checking if enabled, but will not have rst instructions.

nouseix

Indicates a function does not use the IX register as a stack frame reference pointer. This is the default case.

nouseix void func(){
...

}

NULL

The null pointer. (This is actually a macro, not a keyword.) Same as (void *)0.
 Keywords rabbit.com 204

http://www.rabbit.com

protected

An important feature of Dynamic C is the ability to declare variables as protected. Such a variable is pro-
tected against loss in case of a power failure or other system reset because the compiler generates code that
creates a backup copy of a protected variable before the variable is modified. If the system resets while the
protected variable is being modified, the variable’s value can be restored when the system restarts. This
operation requires battery-backed RAM and the use of the main system clock. If you are using the 32 kHz
clock you must switch back to the main system clock to use protected variables because the atomicity of
the write cannot be ensured when using the 32 kHz clock.

main(){
protected int state1, state2, state3;

...
_sysIsSoftReset(); // restore any protected variables

}

The call to _sysIsSoftReset checks to see if the previous board reset was due to the compiler restart-
ing the program (i.e., a soft reset). If so, then it initializes the protected variable flags and calls
sysResetChain(), a function chain that can be used to initialize any protected variables or do other
initialization. If the reset was due to a power failure or watchdog time-out, then any protected variables
that were being written when the reset occurred are restored.

A system that shares data among different tasks or among interrupt routines can find its shared data cor-
rupted if an interrupt occurs in the middle of a write to a multi-byte variable (such as type int or float).
The variable might be only partially written at its next use. Declaring a multi-byte variable shared means
that changes to the variable are atomic, i.e., interrupts are disabled while the variable is being changed.
You may declare a multi-byte variable as both shared and protected.

register

The register keyword is not currently implemented in Dynamic C, but is reserved for possible future
implementation. It is currently synonymous with the keyword auto.
 Keywords rabbit.com 205

http://www.rabbit.com

return

Explicit return from a function. For functions that return values, this will return the function result.

void func (){
...
if(expression) return;

...
}

float func (int x){
...
float temp;
...
return (temp * 10 + 1);

}

root

Indicates a function is to be placed in root memory. This keyword is semantically meaningful in function
prototypes and produces more efficient code when used. Its use must be consistent between the prototype
and the function definition.

root int func(){
...

}
#memmap root
#asm root

...
#endasm

scofunc

Indicates the beginning of a single-user cofunction. See cofunc on page 193.
 Keywords rabbit.com 206

http://www.rabbit.com

segchain

Identifies a function chain segment (within a function).

int func (int arg){
...
int vec[10];
...
segchain _GLOBAL_INIT{

for(i = 0; i<10; i++){ vec[i] = 0; }
}
...

}

This example adds a segment to the function chain _GLOBAL_INIT. Using segchain is equivalent to
using the #GLOBAL_INIT directive. When this function chain executes, this and perhaps other segments
elsewhere execute. The effect in this example is to reinitialize vec[].

shared

Indicates that changes to a multi-byte variable (such as a float) are atomic. Interrupts are disabled when
the variable is being changed. Local variables cannot be shared. Note that you must be running off the
main system clock to use shared variables. This is because the atomicity of the write cannot be ensured
when running off the 32 kHz clock.

shared float x, y, z;
shared int j;

...
main(){

...
}

If i is a shared variable, expressions of the form i++ (or i = i+ 1) constitute two atomic references to
variable i, a read and a write. Be careful because i++ is not an atomic operation.

short

Declares that a variable or array is short integer (16 bits). If nothing else is specified, short implies a 16-bit
signed integer.

short i, j, *k; // 16-bit, signed
unsigned short int w; // 16-bit, unsigned
short funct (short arg){

...
}

 Keywords rabbit.com 207

http://www.rabbit.com

size

Declares a function to be optimized for size (as opposed to speed).

size int func (){
...

}

sizeof

A built-in function that returns the size in bytes of a variable, array, structure, union, or of a data type.
sizeof() can be used inside of assembly blocks.

int list[] = { 10, 99, 33, 2, -7, 63, 217 };
...

x = sizeof(list); // x will be assigned 14

speed

Declares a function to be optimized for speed (as opposed to size).

speed int func (){
...

}

static

Declares a local variable to have a permanent fixed location in memory, as opposed to auto, where the
variable exists on the system stack. Global variables are by definition static. Local variables are auto
by default.

int func (){
...
int i; // auto by default
static float x; // explicitly static
...

}

 Keywords rabbit.com 208

http://www.rabbit.com

struct

This keyword introduces a structure declaration, which defines a type.

struct {
...
int x;
int y;
int z;

} thing1; // defines the variable thing1 to be a struct

struct speed{
int x;
int y;
int z;

}; // declares a struct type named speed

struct speed thing2; // defines variable thing2 to be of type speed

Structure declarations can be nested.

struct {
struct speed slow;
struct speed slower;

} tortoise; // defines the variable tortoise to be a nested struct

struct rabbit {
struct speed fast;
struct speed faster;

}; // declares a nested struct type named rabbit

struct rabbit chips; // defines the variable chips to be of type rabbit
 Keywords rabbit.com 209

http://www.rabbit.com

switch

Indicates the start of a switch statement.

switch(expression){
case const1:

...
break;

case const2:
...
break;

case const3:
...
break

default :
...

}

The switch statement may contain any number of cases. The constants of the case statements are com-
pared with expression. If there is a match, the statements for that case execute. The default case, if
it is present, executes if none of the constants of the case statements match expression.

If the statements for a case do not include a break, return, continue, or some means of exiting
the switch statement, the cases following the selected case will also execute, regardless of whether their
constants match the switch expression.

typedef

This keyword provides a way to create new names for existing data types.

typedef struct {
int x;
int y;

} xyz; // defines a struct type...

xyz thing; // ...and a thing of type xyz

typedef uint node; // meaningful type name
node master, slave1, slave2;
 Keywords rabbit.com 210

http://www.rabbit.com

union

Identifies a variable that can contain objects of different types and sizes at different times. Items in a
union have the same address. The size of a union is that of its largest member.

union {
int x;
float y;

} abc; // overlays a float and an int

unsigned

Declares a variable or array to be unsigned. If nothing else is specified in a declaration, unsigned means
16-bit unsigned integer.

unsigned i, j, *k; // 16-bit, unsigned
unsigned int x; // 16-bit, unsigned
unsigned long w; // 32-bit, unsigned
unsigned funct (unsigned arg){

...
}

Values in a 16-bit unsigned integer range from 0 to 65,535 instead of –32768 to +32767. Values in an

unsigned long integer range from 0 to 232 – 1.

useix

Indicates that a function uses the IX register as a stack frame pointer.

useix void func(){
...

}

See also “nouseix” and directives “#useix #nouseix”.
 Keywords rabbit.com 211

http://www.rabbit.com

waitfor

Used in a costatement or cofunction, this keyword identifies a point of suspension pending the outcome of
a condition, completion of an event, or some other delay.

for(;;){
costate {

waitfor (input(1) == HIGH);
...

}
...

}

waitfordone
(wfd)

The waitfordone keyword can be abbreviated as wfd. It is part of Dynamic C’s cooperative multitask-
ing constructs. Used inside a costatement or a cofunction, it executes cofunctions and firsttime func-
tions. When all the cofunctions and firsttime functions in the wfd statement are complete, or one of
them aborts, execution proceeds to the statement following wfd. Otherwise a jump is made to the ending
brace of the costatement or cofunction where the wfd statement appears; when the execution thread comes
around again, control is given back to the wfd statement.

The wfd statements below are from Samples\cofunc\cofterm.c

x = wfd login(); // wfd with one cofunction

wfd { // wfd with several cofunctions
clrscr();
putat(5,5,"name:");
putat(5,6,"password:");
echoon();

}

wfd may return a value. In the example above, the variable x is set to 1 if login() completes execution
normally and set to -1 if it aborts. This scheme is extended when there are multiple cofunctions inside the
wfd: if no abort has taken place in any cofunction, wfd returns 1, 2, ..., n to indicate which cofunction
inside the braces finished executing last. If an abort takes place, wfd returns -1, -2, ..., -n to indicate which
cofunction caused the abort.
 Keywords rabbit.com 212

http://www.rabbit.com

while

Identifies the beginning of a while loop. A while loop tests at the beginning and may execute zero
or more times.

while(expression){
...

}

xdata

Declares a block of data in extended flash memory.

xdata name { value_1, ... value_n };

The 20-bit physical address of the block is assigned to name by the compiler as an unsigned long variable.
The amount of memory allocated depends on the data type. Each char is allocated one byte, and each
int is allocated two bytes. If an integer fits into one byte, it is still allocated two bytes. Each float and
long cause four bytes to be allocated.

The value list may include constant expressions of type int, float, unsigned int, long,
unsigned long, char, and (quoted) strings. For example:

xdata name1 {'\x46','\x47','\x48','\x49','\x4A','\x20','\x20'};
xdata name2 {'R','a','b','b','i','t'};
xdata name3 {" Rules! "};
xdata name4 {1.0,2.0,(float)3,40e-01,5e00,.6e1};

The data can be viewed directly in the dump window by doing a physical memory dump using the 20-bit
address of the xdata block. See Samples\Xmem\xdata.c for more information.
 Keywords rabbit.com 213

http://www.rabbit.com

xmem

Indicates that a function is to be placed in extended memory. This keyword is semantically meaningful in
function prototypes. Good programing style dictates its use be consistent between the prototype and the
function definition. That is, if a function is defined as:

xmem int func(){}

the function prototype should be:

xmem int func();

Any of the following will put the function in xmem:

xmem int func();
xmem int func(){}

or

xmem int func();
int func(){}

or

int func();
xmem int func(){}

In addition to flagging individual functions, the xmem keyword can be used with the compiler directive
#memmap to send all functions not declared as root to extended memory.

#memmap xmem

This construct is helpful if an application does not have enough root code space. Another strategy is to use
separate I&D space. Note that using both #memmap xmem and separate I&D space might cause an appli-
cation to run out of xmem, depending on the size of the application and the size of the flash. If this occurs,
the programmer should consider using only one of the #memmap xmem or separate I&D space options. If
the application is extremely tight for xmem code memory but has root code memory to spare, the program-
mer may also consider explicitly tagging some xmem or anymem functions with the root keyword.

void

This keyword conforms to ANSI C. Thus, it can be used in three different ways.

1. Parameter List - used to identify an empty parameter list (a.k.a., argument list). An empty parameter
list can also be identified by having nothing in it. The following two statements are functionally
identical:

int functionName(void);
int functionName();

2. Pointer to Void - used to declare a pointer that points to something that has no type.

void *ptr_to_anything;

3. Return Type - used to state that no value is returned.

void functionName(param1, param2);
 Keywords rabbit.com 214

http://www.rabbit.com

volatile

Reserved for future use.

xstring

Declares a table of strings in extended memory. The strings are allocated in flash memory at compile time
which means they can not be rewritten directly.

The table entries are 20-bit physical addresses. The name of the table represents the 20-bit physical
address of the table; this address is assigned to name by the compiler.

xstring name { “string_1”, . . . “string_n” };

yield

Used in a costatement, this keyword causes the costatement to pause temporarily, allowing other costate-
ments to execute. The yield statement does not alter program logic, but merely postpones it.

for(;;){
costate {

...
yield;
...

}
...

}

 Keywords rabbit.com 215

http://www.rabbit.com

14.1 Compiler Directives
Compiler directives are special keywords prefixed with the symbol #. They tell the compiler how to pro-
ceed. Only one directive per line is allowed, but a directive may span more than one line if a backslash (\)
is placed at the end of the line(s).

There are some compiler directives used to decide where to place code and data in memory. They are
called origin directives and include #rcodorg, #rvarorg and #xcodorg. A detailed description of
origin directives may be found in the Rabbit 4000 Designer’s Handbook (look in the index under “origin
directives”).

#asm

Syntax: #asm options

Begins a block of assembly code. The available options are:

• const: When seperate I&D space is enabled, assembly constants should be placed in their own assem-
bly block (or done in C). For more information, see Section 13.2.2, “Defining Constants.”

• debug: Enables debug code during assembly.

• nodebug: Disables debug code during assembly. This is the default condition. It is still possible to sin-
gle step through assembly code as long as the assembly window is open.

• xmem: Places a block of code into extended memory, overriding any previous memory directives. The
block is limited to 4KB.

 If the #asm block is unmarked, it will be compiled to root.

#class

Syntax: #class options

Controls the storage class for local variables. The available options are:

• auto: Place local variables on the stack.

• static: Place local variables in permanent, fixed storage. This option was deprecated in
Dynamic C 10.44. The keyword “static” is still available to apply the static storage class to variables.

The default storage class is auto.
 Keywords rabbit.com 216

http://www.rabbit.com

#debug
#nodebug

Enables or disables debug code compilation. #debug is the default condition. A function's local debug
or nodebug keyword overrides the global #debug or #nodebug directive. In other words, if a func-
tion does not have a local debug or nodebug keyword, the #debug or #nodebug directive would
apply.

#nodebug prevents RST 28h instructions from being inserted between C statements and assembly
instructions.

NOTE: These directives do nothing if they are inside of a function. This is by
design. They are meant to be used at the top of an application file.

#define

Syntax: #define name text or #define name (parameters . . .) text

Defines a macro with or without parameters according to ANSI standard. A macro without parameters
may be considered a symbolic constant. Supports the # and ## macro operators. Macros can have up to 32
parameters and can be nested to 126 levels.

#endasm

Ends a block of assembly code.

#error

Syntax: #error "…"

Instructs the compiler to act as if an error was issued. The string in quotes following the directive is the
message to be printed.
 Keywords rabbit.com 217

http://www.rabbit.com

#fatal

Syntax: #fatal “...”

Instructs the compiler to act as if a fatal error occurred. The string in quotes following the directive is the
message to be printed.

#funcchain

Syntax: #funcchain chainname name

Adds a function, or another function chain, to a function chain.

#GLOBAL_INIT

Syntax: #GLOBAL_INIT { variables }

#GLOBAL_INIT sections are blocks of code that are run once before main() is called. They should
appear in functions after variable declarations and before the first executable code. If a local static variable
must be initialized once only before the program runs, it should be done in a #GLOBAL_INIT section,
but other inititialization may also be done. For example:

// This function outputs and returns the number of times it has been called.
int foo(){

char count;
#GLOBAL_INIT{

// initialize count
count = 1;

// make port A output
WrPortI(SPCR,SPCRShadow,0x84);

}
// output count
WrPortI(PADR,NULL,count);

// increment and return count
return ++count;

}

 Keywords rabbit.com 218

http://www.rabbit.com

#if
#elif
#else
#endif

Syntax: #if constant_expression
#elif constant_expression
#else
#endif

These directives control conditional compilation. Combined, they form a multiple-choice if. When the
condition of one of the choices is met, the Dynamic C code selected by the choice is compiled. Code
belonging to the other choices is ignored.

The #elif and #else directives are optional. Any code between an #else and an #endif is com-
piled if all values for constant_expression are false.

#ifdef

Syntax: #ifdef name

This directive enables code compilation if name has been defined with a #define directive. This direc-
tive must have a matching #endif.

main(){
#if BOARD_TYPE == 1

#define product "Ferrari"

#elif BOARD_TYPE == 2
#define product "Maserati"

#elif BOARD_TYPE == 3
#define product "Lamborghini"

#else
#define product "Chevy"

#endif
...

}

 Keywords rabbit.com 219

http://www.rabbit.com

#ifndef

Syntax: #ifndef name

This directive enables code compilation if name has not been defined with a #define directive. This
directive must have a matching #endif.

#include

Syntax: #include "pathname" or #include <pathname>

Inserts the file specified by "pathname" into the code. This is a straight textual insertion as if the contents
of the file were cut and pasted directly into the file at the location of the #include directive.

The two versions allow for control over which include paths are searched. The double-quotes ("path-
name") around the path cause the compiler to first search in the directory where the source file containing
the #include is located, then move on to the include path list provided by the GUI or project file. The angle
brackets (<pathname>) version skips the initial path and searches just the include paths list.

#interleave
#nointerleave

Controls whether Dynamic C will intersperse library functions with the program’s functions during compi-
lation.

#nointerleave forces the user-written functions to be compiled first.The #nointerleave direc-
tive, when placed at the top of application code, tells Dynamic C to compile all of the application code first
and then to compile library code called by the application code afterward, and then to compile other library
code called by the initial library code following that, and so on until finished.

Note that the #nointerleave directive can be placed anywhere in source code, with the effect of stop-
ping interleaved compilation of functions from that point on. If #nointerleave is placed in library
code, it will effectively cause the user-written functions to be compiled together starting at the statement
following the library call that invoked #nointerleave.
 Keywords rabbit.com 220

http://www.rabbit.com

#makechain

Syntax: #makechain chainname

Creates a function chain. When a program executes the function chain named in this directive, all of the
functions or segments belonging to the function chain execute.

#memmap

Syntax: #memmap options

Controls the default memory area for functions. The following options are available.

• anymem NNNN: When code comes within NNNN bytes of the end of root code space, start putting it in
xmem. Default memory usage is #memmap anymem 0x2000.

• root: All functions not declared as xmem go to root memory.

• xmem: C functions not declared as root go to extended memory. Assembly blocks not marked as
xmem go to root memory. See the description for xmem for more information on this keyword.

#pragma

Syntax: #pragma nowarn [warnt|warns]

Trivial warnings (warnt) or trivial and serious warnings (warns) for the next physical line of code are
not displayed in the Compiler Messages window. The argument is optional; default behavior is warnt.

Syntax: #pragma nowarn [warnt|warns] start

Trivial warnings (warnt) or trivial and serious warnings (warns) are not displayed in the Compiler Mes-
sages window until the #pragma nowarn end statement is encountered. The argument is optional;
default behavior is warnt. #pragma nowarn cannot be nested.
 Keywords rabbit.com 221

http://www.rabbit.com

#precompile

Allows library functions in a comma separated list to be compiled immediately after the BIOS.

The #precompile directive is useful for decreasing the download time when developing your program.
Precompiled functions will be compiled and downloaded with the BIOS, instead of each time you compile
and download your program. The following limitations exist:

• Precompile functions must be defined nodebug.

• Any functions to be precompiled must be in a library, and that library must be included either in the
BIOS using a #use, or recursively included by those libraries.

• Internal BIOS functions will precompile, but will not result in any improvement.

• Libraries that require the user to define parameters before being used can only be precompiled if those
parameters are defined before the #precompile statement. An example of this is included in
precompile.lib.

• Function chains and functions using segment chains cannot be precompiled.

• Precompiled functions will be placed in extended memory, unless specifically marked root.

• All dependencies must be resolved (Macros, variables, other functions, etc.) before a function can be
precompiled. This may require precompiling other functions first.

See precompile.lib for more information and examples.

#undef

Syntax: #undef identifier

Removes (undefines) a defined macro.

#use

Syntax: #use pathname

Activates a library named in LIB.DIR so modules in the library can be linked with the application pro-
gram. This directive immediately reads in all the headers in the library unless they have already been read.
 Keywords rabbit.com 222

http://www.rabbit.com

#useix
#nouseix

Controls whether functions use the IX register as a stack frame reference pointer or the SP (stack pointer)
register. #nouseix is the default.

Note that when the IX register is used as a stack frame reference pointer, it is corrupted when any stack-
variable using function is called from within a cofunction, or if a stack-variable using function contains a
call to a cofunction.

#warns

Syntax: #warns “...”

Instructs the compiler to act as if a serious warning was issued. The string in quotes following the directive
is the message to be printed.

#warnt

Syntax: #warnt “...”

Instructs the compiler to act as if a trivial warning was issued. The string in quotes following the directive
is the message to be printed.
 Keywords rabbit.com 223

http://www.rabbit.com

#ximport

Syntax: #ximport “filename” symbol

This compiler directive places the length of filename (stored as a long) and its binary contents at the next
available place in xmem flash. filename is assumed to be either relative to the Dynamic C installation
directory or a fully qualified path. symbol is a compiler generated macro that gives the physical address
where the length and contents were stored.

The sample program ximport.c illustrates the use of this compiler directive.

#zimport

Syntax: #zimport “filename” symbol

This compiler directive extends the functionality of #ximport to include file compression by an external
utility. filename is the input file (and must be relative to the Dynamic C installation directory or be a fully
qualified path) and symbol represents the 20-bit physical address of the downloaded file.

The external utility supplied with Dynamic C is zcompress.exe. It outputs the compressed file to the
same directory as the input file, appending the extension .DCZ. E.g., if the input file is named
test.txt, the output file will be named test.txt.dcz. The first 32 bits of the output file contains
the length (in bytes) of the file, followed by its binary contents. The most significant bit of the length is set
to one to indicate that the file is compressed.

The sample program zimport.c illustrates the use of this compiler directive. Please see Appendix V.1.3
for further information regarding file compression and decompression.
 Keywords rabbit.com 224

http://www.rabbit.com

 15. OPERATORS

An operator is a symbol such as +, –, or & that expresses some kind of operation on data. Most operators
are binary—they have two operands.

Some operators are unary—they have a single operand,

although, like the minus sign, some unary operators can also be used for binary operations.

There are many kinds of operators with operator precedence. Precedence governs which operations
are performed before other operations, when there is a choice.

For example, given the expression

will the + or the * be performed first? Since * has higher precedence than +, it will be performed first.
The expression is equivalent to

Parentheses can be used to force any order of evaluation. The expression

uses parentheses to circumvent the normal order of evaluation.

Associativity governs the execution order of operators of equal precedence. Again, parentheses can cir-
cumvent the normal associativity of operators. For example,

Unary operators and assignment operators associate from right to left. Most other operators associate from
left to right.

a + 10 // two operands with binary operator "add"

-amount // single operand with unary “minus”

a = b + c * 10;

a = b + (c * 10);

a = (b + c) * 10;

a = b + c + d; // (b+c) performed first
a = b + (c + d); // now c+d is performed first
int *a(); // function returning a pointer to an integer
int (*a)(); // pointer to a function returning an integer
Dynamic C User’s Manual rabbit.com 225

http://www.rabbit.com

Certain operators, namely *, &, (), [], -> and . (dot), can be used on the left side of an assign-
ment to construct what is called an lvalue. For example,

When the data types for an operation are mixed, the resulting type is the more precise.

By placing a type name in parentheses in front of a variable, the program will perform type casting or type
conversion. In the example above, the term (float)i means the “the value of i converted to floating
point.”

The operators are summarized in the following pages.

15.1 Arithmetic Operators

Unary plus, or binary addition. (Standard C does not have unary plus.) Unary plus does not really do any-
thing.

a = b + 10.5; // binary addition
z = +y; // just for emphasis!

Unary minus, or binary subtraction.

a = b - 10.5; // binary subtraction
z = -y; // z gets the negative of y

float x;
(char)&x = 0x17; // low byte of x gets value

float x, y, z;
int i, j, k;
char c;
z = i / x; // same as (float)i / x
j = k + c; // same as k + (int)c

+

–

 Operators rabbit.com 226

http://www.rabbit.com

Indirection, or multiplication. As a unary operator, it indicates indirection. When used in a declaration, *
indicates that the following item is a pointer. When used as an indirection operator in an expression, * pro-
vides the value at the address specified by a pointer.

int *p; // p is a pointer to an integer
int j;

j = 45;
p = &j; // p now points to j

k = *p; // k gets the value to which p points (k=45)
*p = 25; // Same as j = 25, since p points to j

Beware of using uninitialized pointers. Also, the indirection operator can be used in
complex ways.

int *list[10] // array of 10 pointers to integers
int (*list)[10] // pointer to array of 10 integers
float** y; // pointer to a pointer to a float
z = **y; // z gets the value of y
typedef char **stp;
stp my_stuff; // my_stuff is typed char**

As a binary operator, the * indicates multiplication.

a = b * c; // a gets the product of b and c

Divide is a binary operator. Integer division truncates; floating-point division does not.

const int i = 18, const j = 7, k; float x;

k = i / j; // result is 2;
x = (float)i / j; // result is 2.591...

*

/

 Operators rabbit.com 227

http://www.rabbit.com

Pre- or post-increment is a unary operator designed primarily for convenience. If the ++ precedes an oper-
and, the operand is incremented before use. If the ++ operator follows an operand, the operand is incre-
mented after use.

int i, a[12];
i = 0;
q = a[i++]; // q gets a[0], then i becomes 1
r = a[i++]; // r gets a[1], then i becomes 2
s = ++i; // i becomes 3, then s = i
i++; // i becomes 4

If the ++ operator is used with a pointer, the value of the pointer increments by the size of the object (in
bytes) to which it points. With operands other than pointers, the value increments by 1.

Pre- or post-decrement. If the –– precedes an operand, the operand is decremented before use. If the ––
operator follows an operand, the operand is decremented after use.

int j, a[12];
j = 12;
q = a[––j]; // j becomes 11, then q gets a[11]
r = a[––j]; // j becomes 10, then r gets a[10]
s = j––; // s = 10, then j becomes 9
j––; // j becomes 8

If the –– operator is used with a pointer, the value of the pointer decrements by the size of the object (in
bytes) to which it points. With operands other than pointers, the value decrements by 1.

Modulus. This is a binary operator. The result is the remainder of the left-hand operand divided by the
right-hand operand.

const int i = 13;
j = i % 10; // j gets i mod 10 or 3
const int k = -11;
j = k % 7; // j gets k mod 7 or -4

++

––

%

 Operators rabbit.com 228

http://www.rabbit.com

15.2 Assignment Operators

Assignment. This binary operator causes the value of the right operand to be assigned to the left operand.
Assignments can be “cascaded” as shown in this example.

a = 10 * b + c; // a gets the result of the calculation

a = b = 0; // b gets 0 and a gets 0

Addition assignment.

a += 5; // Add 5 to a. Same as a = a + 5

Subtraction assignment.

a -= 5; // Subtract 5 from a. Same as a = a - 5

Multiplication assignment.

a *= 5; // Multiply a by 5. Same as a = a * 5

Division assignment.

a /= 5; // Divide a by 5. Same as a = a / 5

Modulo assignment.

a %= 5; // a mod 5. Same as a = a % 5

Left shift assignment.

a <<= 5; // Shift a left 5 bits. Same as a = a << 5

Right shift assignment.

a >>= 5; // Shift a right 5 bits. Same as a = a >> 5

=

+=

-=

*=

/=

%=

<<=

>>=
 Operators rabbit.com 229

http://www.rabbit.com

Bitwise AND assignment.

a &= b; // AND a with b. Same as a = a & b

Bitwise XOR assignment.

a ^= b; // XOR a with b. Same as a = a ^ b

Bitwise OR assignment.

a |= b; // OR a with b. Same as a = a | b

15.3 Bitwise Operators

Shift left. This is a binary operator. The result is the value of the left operand shifted by the number of bits
specified by the right operand.

int i = 0xF00F;
j = i << 4; // j gets 0x00F0

The most significant bits of the operand are lost; the vacated bits become zero.

Shift right. This is a binary operator. The result is the value of the left operand shifted by the number of
bits specified by the right operand:

int i = 0xF00F;
j = i >> 4; // j gets 0xFF00

The least significant bits of the operand are lost; the vacated bits become zero for unsigned variables and
are sign-extended for signed variables.

&=

^=

|=

<<

>>
 Operators rabbit.com 230

http://www.rabbit.com

Address operator, or bitwise AND. As a unary operator, this provides the address of a variable:

int x;
z = &x; // z gets the address of x

As a binary operator, this performs the bitwise AND of two integer (char, int, or long) values.

int i = 0xFFF0;
int j = 0x0FFF;
z = i & j; // z gets 0x0FF0

Bitwise exclusive OR. A binary operator, this performs the bitwise XOR of two integer (8-bit, 16-bit or
32-bit) values.

int i = 0xFFF0;
int j = 0x0FFF;
z = i ^ j; // z gets 0xF00F

Bitwise inclusive OR. A binary operator, this performs the bitwise OR of two integer (8-bit, 16-bit or 32-
bit) values.

int i = 0xFF00;
int j = 0x0FF0;
z = i | j; // z gets 0xFFF0

Bitwise complement. This is a unary operator. Bits in a char, int, or long value are inverted:

int switches;
switches = 0xFFF0;
j = ~switches; // j becomes 0x000F

&

^

|

~

 Operators rabbit.com 231

http://www.rabbit.com

15.4 Relational Operators

Less than. This binary (relational) operator yields a Boolean value. The result is 1 if the left operand is less
than the right operand, and 0 otherwise.

if(i < j){
body // executes if i < j

}

OK = a < b; // true when a < b

Less than or equal. This binary (relational) operator yields a boolean value. The result is 1 if the left oper-
and is less than or equal to the right operand, and 0 otherwise.

if(i <= j){
body // executes if i <= j

}
OK = a <= b; // true when a <= b

Greater than. This binary (relational) operator yields a Boolean value. The result is 1 if the left operand is
greater than the right operand, and 0 otherwise.

if(i > j){
body // executes if i > j

}
OK = a > b; // true when a > b

Greater than or equal. This binary (relational) operator yields a Boolean value. The result is 1 if the left
operand is greater than or equal to the right operand, and 0 otherwise.

if(i >= j){
body // executes if i >= j

}
OK = a >= b; // true when a >= b

<

<=

>

>=
 Operators rabbit.com 232

http://www.rabbit.com

15.5 Equality Operators

Equal. This binary (relational) operator yields a Boolean value. The result is 1 if the left operand equals the
right operand, and 0 otherwise.

if(i == j){
body // executes if i = j

}

OK = a == b; // true when a = b

Note that the == operator is not the same as the assignment operator (=). A common mistake is to write

if(i = j){
body

}

Here, i gets the value of j, and the if condition is true when i is non-zero, not when i equals j.

Not equal. This binary (relational) operator yields a Boolean value. The result is 1 if the left operand is not
equal to the right operand, and 0 otherwise.

if(i != j){
body // executes if i != j

}

OK = a != b; // true when a != b

==

!=
 Operators rabbit.com 233

http://www.rabbit.com

15.6 Logical Operators

Logical AND. This is a binary operator that performs the Boolean AND of two values. If either operand is
0, the result is 0 (FALSE). Otherwise, the result is 1 (TRUE).

Logical OR. This is a binary operator that performs the Boolean OR of two values. If either operand is
non-zero, the result is 1 (TRUE). Otherwise, the result is 0 (FALSE).

Logical NOT. This is a unary operator. Observe that C does not provide a Boolean data type. In C, logical
false is equivalent to 0. Logical true is equivalent to non-zero. The NOT operator result is 1 if the operand
is 0. The result is 0 otherwise.

test = get_input(...);

if(!test){
...

}

15.7 Postfix Expressions

Grouping. Expressions enclosed in parentheses are performed first. Parentheses also enclose function
arguments. In the expression

a = (b + c) * 10;

the term b + c is evaluated first.

Array subscripts or dimension. All array subscripts count from 0.

int a[12]; //array dimension is 12
j = a[i]; //references the ith element

&&

||

!

()

[]
 Operators rabbit.com 234

http://www.rabbit.com

The dot operator joins structure (or union) names and subnames in a reference to a structure (or union) ele-
ment.

struct {
int x;
int y;

} coord;
m = coord.x;

Right arrow. Used with pointers to structures and unions, instead of the dot operator.

typedef struct{
int x;
int y;

} coord;

coord *p; // p is a pointer to structure

...
m = p->x; // reference to structure element

. (dot)

->
 Operators rabbit.com 235

http://www.rabbit.com

15.8 Reference/Dereference Operators

Address operator, or bitwise AND. As a unary operator, this provides the address of a variable:

int x;
z = &x; // z gets the address of x

As a binary operator, this performs the bitwise AND of two integer (char, int, or long) values.

int i = 0xFFF0;
int j = 0x0FFF;
z = i & j; // z gets 0x0FF0

Indirection, or multiplication. As a unary operator, it indicates indirection. When used in a declaration, *
indicates that the following item is a pointer. When used as an indirection operator in an expression, * pro-
vides the value at the address specified by a pointer.

int *p; //p is a pointer to an integer
int j;

j = 45;
p = &j; // p now points to j

k = *p; // k gets the value to which p points (k=45)
*p = 25; // Same as j = 25, since p points to j

Beware of using uninitialized pointers. Also, the indirection operator can be used in
complex ways.

int *list[10] // array of 10 ptrs to int
int (*list)[10] // ptr to array of 10 ints
float** y; // ptr to a ptr to a float
z = **y; // z gets the value of y
typedef char **stp;
stp my_stuff; // my_stuff is typed char**

As a binary operator, the * indicates multiplication.

a = b * c; // a gets the product of b and c

&

*

 Operators rabbit.com 236

http://www.rabbit.com

15.9 Conditional Operators
Conditional operators are a three-part operation unique to the C language. The operation has three oper-
ands and the two operator symbols ? and :.

If the first operand evaluates true (non-zero), then the result of the operation is the second operand. Other-
wise, the result is the third operand.

int i, j, k;
...
i = j < k ? j : k;

The ? : operator is for convenience. The above statement is equivalent to the following.

if(j < k)
i = j;

else
i = k;

If the second and third operands are of different type, the result of this operation is returned at the higher
precision.

? :
 Operators rabbit.com 237

http://www.rabbit.com

15.10 Other Operators

The cast operator converts one data type to another. A floating-point value is truncated when converted
to integer. The bit patterns of character and integer data are not changed with the cast operator, although
high-order bits will be lost if the receiving value is not large enough to hold the converted value.

unsigned i; float x = 10.5; char c;
i = (unsigned)x; // i gets 10;
c = *(char*)&x; // c gets the low byte of x
typedef ... typeA;
typedef ... typeB;
typeA item1;
typeB item2;
...
item2 = (typeB)item1; // forces item1 to be treated as a typeB

The sizeof operator is a unary operator that returns the size (in bytes) of a variable, structure, array, or
union. It operates at compile time as if it were a built-in function, taking an object or a type as a parameter.

typedef struct{
int x;
char y;
float z;

} record;

record array[100];
int a, b, c, d;
char cc[] = "Fourscore and seven";
char *list[] = { "ABC", "DEFG", "HI" };

#define array_size sizeof(record)*100 // number of bytes in array
a = sizeof(record); // 7
b = array_size; // 700
c = sizeof(cc); // 20
d = sizeof(list); // 6

Why is sizeof(list) equal to 6? list is an array of 3 pointers (to char) and pointers have two
bytes.

Why is sizeof(cc) equal to 20 and not 19? C strings have a terminating null byte appended by the
compiler.

(type)

sizeof
 Operators rabbit.com 238

http://www.rabbit.com

Comma operator. This operator, unique to the C language, is a convenience. It takes two operands: the left
operand—typically an expression—is evaluated, producing some effect, and then discarded. The right-
hand expression is then evaluated and becomes the result of the operation.

This example shows somewhat complex initialization and stepping in a for statement.

for(i=0,j=strlen(s)-1; i<j; i++,j—){
...

}

Because of the comma operator, the initialization has two parts: (1) set i to 0 and (2) get the length of
string s. The stepping expression also has two parts: increment i and decrement j.

The comma operator exists to allow multiple expressions in loop or if conditions.

The table below shows the operator precedence, from highest to lowest. All operators grouped together
have equal precedence.

,

Table 15-1. Operator Precedence

Operators Associativity Function

() [] -> . left to right member

! ~ ++ --

(type) * & sizeof
right to left unary

* / % left to right multiplicative

+ - left to right additive

<< >> left to right bitwise

< <= > >= left to right relational

== != left to right equality

& left to right bitwise

^ left to right bitwise

| left to right bitwise

&& left to right logical

|| left to right logical

? : right to left conditional

= *= /= %= += -=

<<= >>= &= ^= |=
right to left assignment

, (comma) left to right series
 Operators rabbit.com 239

http://www.rabbit.com

 16. GRAPHICAL USER INTERFACE

Dynamic C can be used to edit source files, compile and run programs, and choose options for these activi-
ties using pull-down menus or keyboard shortcuts. There are two modes: edit mode and run mode (run
mode is also known as debug mode). Various debugging windows can be viewed in run mode. Programs
can compile directly to a target controller for debugging in RAM or Flash. Programs can also be compiled
to a .bin file, with or without a controller connected to the PC.

To debug a program, a controller must be connected to the PC, either directly via a programming cable or
indirectly via an Ethernet connection while using either a RabbitLink board or a RabbitSys-enabled board.

Multiple instances of Dynamic C can run simultaneously. This means multiple debugging sessions are pos-
sible over different serial ports. This is useful for debugging boards that are communicating among them-
selves.

16.1 The GUI Environment

16.1.1 Editing
A file is displayed in a text window when it is opened or created. More than one text window may be open.
If the same file is in multiple windows, any changes made to the file in one window will be reflected in all
text windows that display that file. Dynamic C supports normal Windows text editing operations.

A mouse (or other pointing device) may be used to position the text cursor, select text, or extend a text
selection. The keyboard may be used to do these same things. Text may be scrolled using the arrow keys,
the PageUp and PageDown keys, and the Home and End keys. The up, down, left and right arrow keys
move the cursor in the corresponding directions.
The Home key may be used alone or with other keys.

The End key may be used alone or with other keys.

Home Move to beginning of line.

Ctrl+Home Move to beginning of file.

Shift+Home Select to beginning of line.

Shift+Ctrl+Home Select to beginning of file.

End Move to end of line.

Ctrl+End Move to end of file.

Shift+End Select to end of line.

Shift+Ctrl+End Select to end of file.
Dynamic C User’s Manual rabbit.com 240

http://www.rabbit.com

The Ctrl key works in conjunction with the arrow keys:

The Ctrl key also works in conjunction with “[” for delimiter matching. Place the cursor before the delim-
iter you are attempting to match and press “Ctrl+[”. The cursor will move to just before the matching
delimiter.

Note that delimiters in comments are also matched. For example, in the following code, <Ctrl+[> counts
commented-out braces in the matching, giving a false indication that the main function has balanced curly
braces when in fact it does not.

main()
{

{
//}

/*
}
*/

16.1.2 Menus
Dynamic C’s main menu has eight command menus, as well as the standard Windows system menus.

An available command can be executed from a menu by either clicking the menu and then clicking the
command, or by pressing the Alt key to activate the menu bar, using the left and right arrow keys to select
a menu, and then using the up or down arrow keys to select a command before pressing the Enter key.

16.1.3 Using Keyboard Shortcuts

For some of us it is easier to type keyboard shortcuts than to use a mouse. A menu can be activated by
pressing the Alt key while pressing the underlined letter of the menu name. This is the de facto standard, as
it is used in numerous commercial software products. Pressing the Alt key allows you to see which charac-
ter in the menu name is underlined, as shown in this second screenshot of Dynamic C’s main menu. All the
keyboard shortcuts on the main menu use the first letter of the menu name in the shortcut. Some keyboard
shortcuts have this obvious connection while others do not. See the Editor Tab screenshot in Section 16.7

Ctrl+Left Move cursor to previous word.

Ctrl+Right Move cursor to next word.

Ctrl+Up
Move editor window up, text moves down one line. Cursor is
not moved.

Ctrl+Down
Move editor window down, text moves up one line. Cursor is
not moved.
 Graphical User Interface rabbit.com 241

http://www.rabbit.com

for some examples of not so obvious keyboard shortcuts. A keyboard shortcut that is not menu specific is
the Esc key, which will make any visible menu disappear.

16.1.4 Editor Window Popup Menu
Right click anywhere in the editor window and a popup menu will appear. All of the menu options, with
the exception of Open File at Cursor, are available from the main menu, e.g., New is an option in the File
menu and was described earlier with the other options for that menu.

Open File at Cursor <Ctrl+Enter>
Attempts to open the file whose name is under the cursor. The file will be opened in a new editor win-
dow, if the file name is listed in the “lib.dir” file as either an absolute path or a path relative to the
Dynamic C root directory or if the file is in Dynamic C’s root directory. As a last resort, an Open dia-
log box will appear so that the file may be manually chosen.
 Graphical User Interface rabbit.com 242

http://www.rabbit.com

16.2 File Menu
To select the File menu: click on its name in Dynamic C’s main menu or press <Alt+F>.

 New <Ctrl+N>
Creates a blank, untitled program in a new window,
called the text window or the editor window. If you right
click anywhere in the text window a popup menu will
appear. It is available as a convenience for accessing
some frequently used commands.

Open <Ctrl+O>
Presents a dialog box to specify the name of a file to
open. To select a file, type in the file name (pathnames
may be entered), or browse and select it. Unless there is a
problem, Dynamic C will present the contents of the file
in a text window. The program can then be edited or com-
piled. Multiple files can be selected by holding down
<Ctrl> then clicking the left mouse on each filename you
want to open, or by dragging the selection rectangle over
multiple filenames.

Save <Ctrl+S>
The Save command updates an open file to reflect changes made since the last time the file was saved.
If the file has not been saved before (i.e., the file is a new untitled file), the Save As dialog will appear
to prompt for a name. Use the Save command often while editing to protect against loss during power
failures or system crashes.

Save As
Presents a dialog box to save the file under a new name. To select a file name, type it in the File name
field. The file will be saved in the folder displayed in the Save in field. You may, of course, browse to
another location. You may also select an existing file. Dynamic C will ask you if you wish to replace
the existing file with the new one.

Save All <Shift+Ctrl+S>
This command saves all modified files that are currently open.

Close <Ctrl+F4>
Closes the active editor window. If there is an attempt to close a modified file, Dynamic C will ask you
if you wish to save the changes. The file is saved when Yes is clicked or “y” is typed. If the file is unti-
tled, there will be a prompt for a file name in the Save As dialog. Any changes to the document will be
discarded if No is clicked or “n” is typed. Choosing Cancel results in a return to Dynamic C with no
action taken.

Project
Allows a project file to be created, opened, saved, saved as a different name and closed. See
Chapter 18, “Project Files.” for all the details on project files.
 Graphical User Interface rabbit.com 243

http://www.rabbit.com

Print Setup
Displays the Page Setup dialog box. Margins, page orientation, page numbers and header and footer
properties are all chosen here.

The “Printer Setup” button is in the bottom left of the dialog box. It brings up the Print Setup dialog
box, which allows a printer to be selected. The “Network’ button allows printers to be added or
removed from the list of printers.

Print Preview
Displays whichever file is in the active editor window in the Preview Form window, showing how the
text will look when it is printed. You can search and navigate through the printable pages and bring up
the Print dialog box.

Print
Brings up the Print dialog box, which allows you to choose a printer. Only text in an editor window can
be printed. To print the contents of debug windows the text must be copied and pasted to an editor win-
dow. (The Stdio window is an exception; its contents may be automatically written to a file, which may
then be printed.) As many copies of the text as needed may be printed. If more than one copy is
requested, the pages may be collated or uncollated.

Exit <Alt+F4>
Close Dynamic C after prompting to save any unsaved changes to open files.
 Graphical User Interface rabbit.com 244

http://www.rabbit.com

16.3 Edit Menu
Click the menu title or press <Alt+E> to select the EDIT menu.

Undo <Ctrl+Z>
This option undoes recent changes in the active edit window.
The command may be repeated several times to undo multi-
ple changes. Undo operations have unlimited depth. Two
types of undo are supported—applied to a single operation
and applied to a group of the same operations (2 continuous
deletes are considered a single operation.

Dynamic C only discards undo information if the “Undo
after save” option is unchecked in the Editor dialog under
Environment Options.

Redo <Shift+Ctrl+Z>
Redoes changes recently undone. This command only works
immediately after one or more Undo operations.

Select All <Ctrl+A>
The keyboard shortcut <Ctrl+A> no longer clears all break-
points. Starting with Dynamic C 10.21, this shortcut selects
all text in the active window. “Select All” works in the fol-
lowing windows: Editor, Stdio, Message, Disassembly, Reg-
isters, Stack, Watch, Stack Tracing, Grep Results and
Function Description.

Cut <Ctrl+X>
Removes selected text and saves to the clipboard.

Copy <Ctrl+C>
Makes a copy of text selected in a file or in a debug window.
The text is saved on the clipboard.

Paste <Ctrl+V>
Pastes text from the clipboard to the current insertion point. Nothing can be pasted in a debugging win-
dow. The contents of the clipboard may be pasted virtually anywhere, repeatedly (as long as nothing
new is cut or copied into the clipboard), in the same or other source files, or even in word processing or
graphics program documents.

Insert Code Template <Ctrl+J>
Opens the code template list at the current cursor location. Clicking on a list entry or pressing <Enter>
inserts the selected template at the cursor location in the active edit window. The arrow keys may be
used to scroll the list. Pressing the first letter of the name of a code template selects the first template
whose name starts with that letter. Pressing the same letter again will go to the next template whose
name starts with that letter. Continuing to press the same letter cycles through all the templates whose
name starts with that letter.

To create, edit or remove templates from the code template list, go to Environment Options and click
on the Code Templates tab.

Toggle Bookmark
Toggle one of ten bookmarks in the active edit window.
 Graphical User Interface rabbit.com 245

http://www.rabbit.com

Go to Bookmark
Go to one of ten bookmarks in the active edit window. Executing this command again will take you
back to the location you were at before going to the bookmarked location.

Find <Ctrl F>
Finds first occurrence of specified text. Text may be specified by selecting it prior to opening the Find
dialog box if the option “Find text at cursor” is checked in the Editor dialog under Environment
Options. Only one word may be selected; if more than one word is selected, the last word selected
appears as the entry for the search text. More than one word of text may be specified by typing it in or
selecting it from the available history of search text.

There are several ways to narrow or broaden the search criteria using the Find dialog box. For exam-
ple, if Case sensitive is unchecked, then “Switch” and “SWITCH” would match the search text
“switch.” If Whole words only is checked, then the search text “switch” would not match “switches.”
Selecting Entire scope will cause the whole document to be searched. If Selected text is chosen and
the Persistent blocks option was checked in the Editor tab in Environment Options, the search will take
place only in the selected text.

Replace <F6>
Finds and replaces the specified text. Text may be specified by selecting it prior to opening the
Replace Text dialog box. Only one word may be selected; if more than one word is selected, the last
word selected appears as the entry for the search text. More than one word of text may be specified by
typing it in or selecting it from the available history of search text. The replacement text is typed or
selected from the available history of replacement text.

As with the Find dialog box, there are several ways to narrow or broaden the search criteria. An impor-
tant option is Prompt on replace. If this is unchecked, Dynamic C will not prompt before making the
replacement, which could be dangerous in combination with the choice to Replace All.

Find Next <F3>
Once search text has been specified with the Find or Replace commands, the Find Next command will
find the next occurrence of the same text, searching forward or in reverse, case sensitive or not, as
specified with the previous Find or Replace command. If the previous command was Replace, the
operation will be a replace.

Reverse Find Next <Alt+F3>
Behaves the same as Find Next except in the opposite direction. If Find Next is searching forward in
the file, Reverse Find Next will search backwards, and vice versa.
 Graphical User Interface rabbit.com 246

http://www.rabbit.com

Find in Files (Grep)... <Shift+Ctrl+F>
This option searches for text in the currently open file(s) or in any directory (optionally including sub-
directories) specified. Standard Unix-style regular expressions are used.

A window with the search results is displayed with an entry for each match found. Double-clicking on
an entry will open the corresponding file and place the cursor on the search string in that file. Multiple
file types can be separated by semicolons. For example, entering C:\mydirectory*.lib;*.c
will search all .lib and .c files in mydirectory.

The “Search Results” window has a right-click menu. Dynamic C 10.21 introduces two options in this
menu: the ability to select all text in the window <Ctrl+A> and the ability to delete any text selected in
the window.

Go to Line Number
Positions the insertion point at the beginning of the specified line.

Close all GREPS <Alt+G>
Closes all open GREP Search Results windows.

Previous Error <Ctrl+Alt+P>
Locates the previous compilation error in the source code. Any error messages will be displayed in a
list in the Compiler Messages window after a program is compiled. Dynamic C selects the previous
error in the list and displays the offending line of code in the text window.

Next Error <Ctrl+Alt+N>
Locates the next compilation error in the source code. Any error messages will be displayed in a list in
the Compiler Messages window after a program is compiled. Dynamic C selects the next error in the
list and displays the offending line of code in the text window.

Edit Mode <F4>
Switches to edit mode from run, also known as debug, mode. After successful compilation or execu-
tion, no changes to the file are allowed unless in edit mode. If the compilation fails or a runtime error
occurs, Dynamic C comes back already in edit mode.
 Graphical User Interface rabbit.com 247

http://www.rabbit.com

16.4 Compile Menu
Click the menu title or press <Alt+C> to select the Compile menu.

 Compile <F5>
Compiles a program and loads it to the target or to a .bin file. When you press <F5> or select Compile
from the Compile menu, the active file will be compiled according to the current compiler options.
Compiler options are set in the Compiler tab of the Project Options dialog. When compiling directly to
the target, Dynamic C queries the attached target for board information and creates macros to automat-
ically configure the BIOS and libraries.

Any compilation errors are listed in the automatically activated Compiler Messages window. Press
<F1> to obtain more information for any error message that is highlighted in this window.

Compile to Target
Expands to one of two choices. They override any BIOS Memory Setting choice made in the Compiler
tab of the Project Options dialog.

• Store Program in Flash

• Store Program in RAM

The compiler will show board type and other board specific information while doing a compile to tar-
get. The information shown will be identical to what the compiler shows when compiling to a .bin
file.
 Graphical User Interface rabbit.com 248

http://www.rabbit.com

Compile to .bin File
Compiles a program and writes the image to a .bin file.

The target configuration used in the compile is determined in the Compiler tab of the Project Options
dialog. From there, under “Default Compile Mode,” you can choose to use the attached target or a
defined target configuration. The defined target configuration is accessed by clicking on the Targetless
tab which will reveal three additional tabs: RTI File, Specify Parameters and Board Selection. To learn
more about these tabs see “Targetless Tab” on page 285.

The .bin file may be used with a device programmer to program multiple targets; or the Rabbit Field
Utility (RFU) can be used to load the .bin file to the target.

If you are creating a special program such as a cold loader that starts at address 0x0000 you can
exclude the BIOS from being compiled into the .bin file by unchecking the option to include it. This
is done by choosing Options | Project Options | Compiler and clicking on the “Advanced...” button.

In addition to the .bin file, several other files are generated with this compile option. For example, if
you compile demo1.c to a .bin file, the following files will be in the same folder as demo1.c:

• DEMO1.bak - backup of the application source file (made at compile time, when this option is
enabled).

• demo1.bdl - binary image download file (used when loading the application to a connected
target).

• DEMO1.brk - debugger breakpoint information.

• demo1.hdl - no longer used.

• demo1.hex - simple Intel HEX format output image file; the serial DLM samples download a
DLP's HEX file and load the image to Flash.

• DEMO1.map - the application's code/data map file (RabbitBios.map is also generated,
separately). For more information on the map file, see “Map File Generation” on page 329

• DEMO1.rom - ROM "output" file, containing redundant addresses (due to fixups); it's used to
generate the BDL, BIN, HEX, and HDL files.

Reset Target/Compile BIOS <Ctrl+Y>
This option reloads the BIOS to RAM or Flash, depending on the choice made under BIOS Memory
Setting in the Compiler dialog (viewable from Options | Project Options).

The following message will appear upon successful compilation and loading of BIOS code.
 Graphical User Interface rabbit.com 249

http://www.rabbit.com

16.5 Run Menu
Click the menu title or press <Alt+R> to select the Run menu.

Run <F9>
Starts program execution from the current breakpoint.
Registers are restored, including interrupt status, before
execution begins. If in Edit mode, the program is com-
piled and downloaded.

Stop <Ctrl+Q>
The “Stop” command stops the program at the current
point of execution. Usually, the debugger cannot stop
within nodebug code. On the other hand, the target can
be stopped at an RST 028h instruction if an RST 028h
assembly code is inserted as inline assembly code in
nodebug code. However, the debugger will never be
able to find and place the execution cursor in nodebug
code.

Run w/ No Polling <Alt+F9>
This command is identical to the “Run” command, with
one exception. The PC polls the target every three sec-
onds by default to determine if the target has crashed.
When debugging via RabbitLink, polling is used to
make the RabbitLink keep its connection to the PC

open. Polling does have some overhead, but it is very minimal. If debugging ISRs, it may be helpful to
disable polling.

Step Into <F7>
Executes one C statement (or one assembly language instruction if the assembly window is displayed)
with descent into functions. If nodebug is in effect and the Assembly window is closed, execution
continues until code compiled without the nodebug keyword is encountered.

Step Over <F8>
Executes one C statement (or one assembly language instruction if the assembly window is displayed)
without descending into functions.

Source Step Into <Alt+F7>
Executes one C statement with descent into functions when the assembly window is open. If
nodebug is in effect, execution continues until code compiled without the nodebug keyword is
encountered.

Source Step Over <Alt+F8>
Executes one C statement without descending into functions when the assembly window is open.

Toggle Breakpoint <F2>
Toggles a soft breakpoint at the current cursor location. Soft breakpoints do not affect the interrupt
state at the time the breakpoint is encountered, whereas hard breakpoints and hardware breakpoints do.

Breakpoints can be toggled in edit mode as well as in debug mode. Breakpoint information is not only
retained when going back and forth from edit mode to debug mode, it is stored when a file is closed
and restored when the file is reopened. Breakpoints are set in library code the same way they are set in
application code.
 Graphical User Interface rabbit.com 250

http://www.rabbit.com

Toggle Hard Breakpoint <Alt+F2>
Toggles a hard breakpoint at the current cursor location. A hard breakpoint differs from a soft break-
point in that interrupts are disabled when the hard breakpoint is reached. Note that a hard breakpoint is
not the same as a hardware breakpoint.

Breakpoints can be toggled in edit mode as well as in debug mode. Breakpoint information is not only
retained when going back and forth from edit mode to debug mode, it is stored when a file is closed
and restored when the file is reopened. Breakpoints are set in library code the same way they are set in
application code.

Add/Edit Hardware Breakpoints <Shift+Ctrl+F2>

Hardware breakpoints were introduced with the Rabbit 4000 and are supported by Dynamic C begin-
ning with version 10.21.

Choosing this menu item brings up the window pictured here. The drop-down menu allows you to
select one of the six available hardware breakpoints (breakpoint 0 is used internally).
A breakpoint can be generated on an address match by checking data write, data read, instruction fetch
or any combination thereof.

There are two permissable address types: physical ([0x]xxxxxx) and segmented (xxx:xxxx). The
address type to use depends on several factors. One factor is the method used to discern the desired
address. For example, selecting one of the disassemble options from the Inspect menu opens the
Assembly window and displays segmented addresses. Naturally, it saves time to use the address type
most readily available.

To disable a single breakpoint, select it in the drop-down menu, uncheck the data write, data read,
and/or the instruction fetch boxes and click “Update.” Starting with Dynamic C 10.50, hardware
breakpoints are disabled when code is executing within the debug kernel.

The text box labeled “Mask” allows you to mask off any of the 24 bits of the address. A “one” in the
mask inhibits the corresponding bit in the address match register from contributing to the address
match condition, essentially creating a “don’t care” condition for that address bit. Basically, the mask
allows you to express a range of addresses, thus its value should be chosen carefully.

A hardware breakpoint configured for a data write and/or data read can be triggered by internal I/O
writes and/or reads. For example, in the following code, with a hardware breakpoint set at address
0x000600 (i.e., VRAM00) for a data read, Dynamic C will stop after the “ld” instruction.

void main() {
#asm debug
ioi ld a, (VRAM00)
#endasm
}

Note that a hardware breakpoint is not the same as a hard breakpoint. Hardware breakpoints are “hard”
in the sense that interrupts are disabled by default when the breakpoint occurs.
 Graphical User Interface rabbit.com 251

http://www.rabbit.com

Clear All Breakpoints <Ctrl+B>
Clears all software breakpoints. The shortcut was changed to Ctrl+B in Dynamic C 10.21.

Poll Target <Ctrl+L>
A check mark means that Dynamic C will poll the target. The absence of a check mark means that
Dynamic C will not poll the target.

If “Poll Target” is selected, Dynamic C sends a message to the target every three seconds and expects a
response. If no response is received, Dynamic C ends the debugging session. Several things can be
responsible for the target not replying to a polling message, such as loss of power, running in a loop
with interrupts disabled, leaving interrupts disabled long enough to disrupt the serial port A ISR, or
overwriting serial port A configuration, among other things. Polling does introduce overhead, but it is
minimal since it only occurs every three seconds. Without polling turned on, Dynamic C will only
notice an unresponsive target when the user attempts to do some other sort of debugging such as stop-
ping the target, setting a breakpoint, single stepping, setting or evaluating a watch, etc.

Reset Program <Ctrl+F2>
Resets program to its initial state. The execution cursor is positioned at the start of the main function,
prior to any global initialization and variable initialization. (Memory locations not covered by normal
program initialization may not be reset.)

The initial state includes only the execution point (program counter), memory map registers, and the
stack pointer. The “Reset Program” command will not reload the program if the previous execution
overwrites the code segment. That is, if your code is corrupted, the reset will not be enough; you will
have to reload the program to the target.

Debug Mode <Shift+F5>
In Dynamic C you have the ability to switch back to debug mode from edit mode without having to
recompile the program.

If the source file has been modified while in edit mode, a popup dialog lets you choose whether to run
the non-modified code or to go ahead and recompile and download again.

Close Connection
Disconnects the programming serial port between PC and target so that the target serial port and the PC
serial port are both accessible to other applications.
 Graphical User Interface rabbit.com 252

http://www.rabbit.com

16.6 Inspect Menu
Click the menu title or press <Alt+I> to open the Inspect menu.

The Inspect menu provides commands to manipulate watch expressions, view disassembled code, and pro-
duce hexadecimal memory dumps. The Inspect menu commands and their functions are described here.

Add Watch <Ctrl+W>
This command displays the “Add Watch Expression” dialog. Enter watch expressions with this dialog
box.

A watch expression may be any valid C expression, including assignments, function calls, and prepro-
cessor macros. (Do not include a semicolon at the end of the expression.) If the watch expression is
successfully compiled, it and its outcome will appear in the Watches window.

If the cursor in the active window is positioned over a variable or function name, that name will appear
in the Watch Expression text box when the Add Watch Expression dialog box appears. Clicking the
Add button will add the given watch expression to the watch list, and will leave the Add Watch
Expression dialog open so that more watches can be added. Clicking the “OK” button will add the
given watch expression to the watch list, and close the Add Watch Expression dialog.

To add a local variable to the Watch window, the target controller’s program counter (PC) must point
to the function where the local variable is defined. If the PC points outside the function, an error mes-
sage will display when “Add” or “OK” is pressed, stating that the variable is out of scope or not
declared.
 Graphical User Interface rabbit.com 253

http://www.rabbit.com

An example of the results displayed in the Watches window appears below.

If the evaluation of a watch expression causes a run-time exception, the exception will be ignored and
the value displayed in the Watches window for the watch expression will be undefined.

Structure members are displayed whenever a watch expression is set on a struct. The Debug Windows
tab of the Environment Options menu lets you set flyover hint evaluation of any expression that can be
watched without having to explicitly set the watch expression. See “Watch” on page 292 and “Watch
Window” on page 272 for more details.

Delete Watch
Removes highlighted entry from the Watches window.

Delete All Watches
Removes all entries from the Watches window.

Update Watch Window <Ctrl+U>
Forces expressions in the Watches window to be evaluated. If the target is running nodebug code, the
Watches window will not be updated, and the PC will lose communication with the target. Inserting an
RST 028h instruction into frequently executed nodebug code will allow the Watches window to be
updated while running in nodebug code. Normally the Watches window is updated every time the exe-
cution cursor is changed, that is, when a single step, a breakpoint, or a stop occurs in the program.

Evaluate Expression
Brings up the Evaluate Expression dialog where you can enter a single expression in the Expression
dialog. The result is displayed in the Result text box when Evaluate is clicked. Multiple Evaluate
Expression dialogs can be active at the same time.

Disassemble at Cursor <Ctrl+F10>
Loads, disassembles and displays the code at the current editor cursor location. This command does
not work in user application code declared as nodebug. Also, this command does not stop the execu-
tion on the target.

Disassemble at Address <Alt+F10>
Brings up the Disassemble at Address dialog where you can enter an address at which to begin disas-
sembly. The format of the address is either the logical address specified as a hex number (0xnnnn or
just nnnn) or as an xpc:offset pair separated by a colon (nn:mmmm).

The Disassembled Code window displays the result. See “Assembly (F10)” on page 293 for details
about this window.
 Graphical User Interface rabbit.com 254

http://www.rabbit.com

Dump at Address <Ctrl+D>
Allows blocks of raw values in any memory location to be displayed. Values are displayed on the
screen or written to a file. If separate I&D space is enabled, you can choose which logical space to
examine: instruction space or data space.

Dynamic C highlights differences when displaying to the screen: each time you single step in C or
assembly changed data is highlighted in reverse video in the Memory Dump window. (This is also true
for the Stack and Register windows.)

When writing to a file, the option “Save to file” requires a file pathname and the number of bytes to
dump. The option “Save entire flash to file” requires a file pathname. If you are running in RAM, then
it will be RAM that is saved to a file, not Flash, because this option simply starts dumping physical
memory at address zero.

When displaying on a screen, a Memory Dump window is opened. A typical screen display appears
below. Although the cursor is not visible in the screen capture below of the Memory Dump window, it
is hovering over logical memory location 0x013c, which has a value of 0x79. This information is given
in the fly-over text and also in the titlebar. Either or both of these options may be disabled by right
clicking in the Memory Dump window or in the Options | Environment Options, Debug Windows tab,
under Specific Preferences for the Memory Dump window.
 Graphical User Interface rabbit.com 255

http://www.rabbit.com

Memory Dump windows may be scrolled. Scrolling causes the contents of other memory addresses to
appear in the window. Hotkeys ArrowUp, ArrowDown, PageUp, PageDown are active in the Memory
Dump window. The window always displays as many lines of 16 bytes and their ASCII equivalent as
will fit in the window.

Values in the Dump window are updated automatically either when Dynamic C stops or comes to a
breakpoint. Updates only occur if the window is updateable. This can be set either by right clicking in
the Memory Dump window and toggling the updateable menu item, or by clicking on the Debug Win-
dows tab in Options | Environment Options. Select Memory Dump under Specific Preferences, then
check the option “Allow automatic updates.” The Memory Dump window can be updated at any time
by clicking the Update button on the tool bar or by right clicking and choosing Update from the popup
menu.

The Memory Dump window is capable of displaying three different types of dumps. A dump of a log-
ical address ([0x]mmmm) will result in a 64k scrollable region (0x0000 - 0xffff). A dump of a physical
address ([0x]mmmmm) will result in a dump of a 1M region (0x00000 - 0xfffff). A dump of an
xpc:offset address (nn:mmmm) will result in a segmented dump range of 4k, 64k, or “Full Range,”
depending on the size set on the Debug Windows tab on the Options | Environment Options menu.

Note that adding a leading zero to a logical address makes it a physical address.

Any number of dump windows may be open at the same time. The type of dump or dump region for a
dump window can be changed by entering a new address in the toolbar’s text entry area. To the right of
this area is a button that, when clicked, will cause the address in the text entry area to be the first
address in the Dump window. The toolbar for a dump window may be hidden or visible.

Goto Execution Point <Ctrl+E>
When stopped in debug mode, this option places the cursor at the statement or instruction that will exe-
cute next.
 Graphical User Interface rabbit.com 256

http://www.rabbit.com

16.7 Options Menu
Click on the Options menu title or press <Alt+O> to select the Options menu.

16.7.1 Environment Options
Dynamic C comes with a built-in, full-featured text editor. It may be customized to suit your style
using the Environment Options dialog box. The dialog box has tabs for various aspects of the editor.
Note that keyboard shortcuts for some of the options have no character to underline, so the character is
shown between brackets. For example, when the Editor menu options are visible, Alt+Q is the key-
board shortcut for toggling the option “Cursor through tabs”.

16.7.1.1 Editor Tab

Click on the Editor tab to display the following dialog. Installation defaults are shown.

 Graphical User Interface rabbit.com 257

http://www.rabbit.com

Backup / Auto Save Options

These three features were added in Dynamic C 10.21: automatically backup a file before com-
pilation, automatically save all open editor windows before compilation, turn off the prompt
that asks you if you want to reload a modified file.

The Editor options are detailed here. All actions taken are immediately reflected in the text
area at the bottom of the dialog, and in any open editor windows.

Auto Indent Mode

Checking this causes a new line to match the indentation of the previous line.

Use Previous Indention

Uses the same characters for indentation that were used for the last indentation. If the last
indentations was 2 tabs and 4 spaces, the next indentation will use the same combination of
whitespace characters.

Cursor Through Tabs

With this option checked, the right and left arrow keys will move the cursor through the logical
spaces of a tab character. If this is unchecked the cursor will move the entire length of the tab
character.

Backspace Unindents

Check this to backspace through indentation levels. If this is unchecked, the backspace will
move one character at a time.

Show Line Numbers

Check this to display line numbers in the text window. This must be checked to activate the
option Show line numbers on gutter.

Show Line Numbers on Gutter

If gutters are visible, check this to display line numbers in the gutter.

Notepad Style Cursor

Checking this causes the cursor to behave similar to Notepad.

Cursor Beyond EOF

Check this option to move the cursor past the end of the file.

Cursor Beyond EOL

Check this option to move the cursor past the end of the line.

Selection Beyond EOL

Check this option to select text beyond the end of the line.

Keep Trailing Blanks

Check this option to keep extra spaces and tabs at the end of a line when a new line is started.
 Graphical User Interface rabbit.com 258

http://www.rabbit.com

Persistent Blocks

Check this option to keep selected text selected when you move the cursor using the arrow
keys. Using the mouse to move the cursor will deselect the block of text. Using menu com-
mands or keyboard shortcuts will affect the entire block of selected text. For example, pressing
<Ctrl+X> will cut the selected block. But pressing the delete key will only delete one character
to the right of the cursor. If this option was unchecked, pressing the delete key would delete all
the selected text.

If this option is checked and the Find or Replace dialog is opened with a piece of text selected
in the active edit window, the search scope will default to that bit of selected text only.

Overwrite Blocks

Check this option to enable overwriting a selected block of text by pressing a key on the key-
board. The block of text may be overwritten with any character, including whitespaces or by
pressing delete or backspace.

Double Click Line

Check this option to allow an entire line to be selected when you double click at any position in
the line. When this option is unchecked, double clicking will select the closest word to the left
of the cursor.

Find Text at Cursor

When either the Search or Replace dialogs are opened, if this option is checked the word at the
cursor location in the active editor window will be placed into the “Text to Find” edit box. If
this option is unchecked, the edit box will contain the last search string.

Select Found Text

The color of found text can be set in Options | Environment Options, on the Syntax Colors
page. Select “Search Match” from the Element list box, then set the foreground and back-
ground colors.

If this box is unchecked the Search Match color scheme will be used when a match is found,
but the text will not be selected for copy or delete operations. If this option is checked, the
matched text will automatically be selected so that it may be copied or deleted.

Use Syntax Highlight

Check this option to enable the Display and Syntax Color choices to be active. When this
option is checked, the “Use Syntax Highlighting” in the edit window’s right-click menu allows
you to toggle the syntax highlighting in the active file.

Block Overwrite Cursor

Check this option to show the cursor as a block when an editor is placed in overwrite mode.

Undo After Save

Check this option to enable undo operations after a file has been saved. With this option
unchecked, the undo list for a file is erased each time the file is saved.

Group Undo

Check this option to undo changes one group at a time. With this option unchecked, each oper-
ation is undone individually.
 Graphical User Interface rabbit.com 259

http://www.rabbit.com

Disable Dragging

Checking this option disables drag and drop operations: i.e., the ability to move selected text
by pressing down the left mouse button and dragging the text to a new location.

Center Bookmarks

Check this option so that when you jump to a bookmark it is centered in the editor window.

Block Indent

The number of spaces used when a selected block is indented using <Ctrl+k+i> or unindented
using <Ctrl+k+u>.

Tab Stops

This is a comma separated list of numbers which indicate the number of spaces per tab stop. If
only one number is entered, say “3,” then the first tab stop is 3 spaces, as is each additional tab
stop. Every additional number in the list indicates the number of spaces for all subsequent tabs.
E.g., if the list consists of “3,6,12” the first tab stop is 3 spaces, the second tab stop is 3 more
spaces and all subsequent tab stops are 6 spaces.

Keymapping

The keyboard has five different default key mappings: Default, Classic, Brief, Epsilon and
Visual Studio. Change the keymapping with this pulldown menu.
 Graphical User Interface rabbit.com 260

http://www.rabbit.com

16.7.1.2 Gutter & Margin Tab

Click on the Gutter & Margin tab to display the following dialog.

Editor gutter

Check the “Visible” box to create a gutter in the far left side of the text window. Use the
“Width” scroll bar to set the width of the gutter in pixels. The button to the right updates the
width parameter. Changing the width and clicking on OK at the bottom of the dialog does not
update the gutter width; you must click on the button. Use the “Color” pulldown menu to set
the color. The button to the right brings up more color choices.

Editor margin

Check the “Visible” box to create a right-hand margin in the text window. Use the “Width”
scroll bar and the “Color” pulldown menu to set the like-named attributes of the margin line.
The “Style” pulldown menu displays the line choices available: a solid line and various dashed
lines. The “Position” scroll box is used to place the margin at the desired location in the text
window.
 Graphical User Interface rabbit.com 261

http://www.rabbit.com

Line Number Colors

If line numbers are set to visible and are not placed on the gutter, the Foreground color will set
the color of the line numbers and the Background color will set the color on which the line
numbers appear.

16.7.1.3 Display Tab

Click on the Display tab to display the following dialog.

Editor Font

This area of the dialog box is for choosing the font style and size. Check Use mono font for
fixed spacing with each character; note that this option limits the available font styles.
 Graphical User Interface rabbit.com 262

http://www.rabbit.com

Special Symbols

Check the box labeled “Use” to view end of line, end of file, space and/or tab symbols in the
editor window.

Background Colors

This area of the dialog box is for choosing background colors for editor windows and the main
Dynamic C workspace. The editor window can have a different background color in edit mode
than it does in run mode. Each pulldown menu has an icon to the right that brings up additional
color choices.

Foreground Color (non-syntax)

If syntax highlighting is not used, the color selected here will be the foreground color used in
the editor file.

16.7.1.4 Syntax Colors Tab

Click on the Syntax Colors tab to display the following dialog.

 Graphical User Interface rabbit.com 263

http://www.rabbit.com

Element

In this text box are the different elements that may be in a file (strings, comments, integers,
etc.). For each one you may choose a foreground and a background color. You may also opt to
use the default colors: black for foreground and white for background. In the “Text” attribues
area of the dialog box, you may set bold, italic and/or underline for any of the elements.

Open / Save Buttons

These buttons load and save color styles into files with a .rgb extension. Clicking the “Open”
button will bring up an Open File dialog box, where you choose a .rgb file that will set all of
the syntax colors. There is a subdirectory titled Schemes under the root Dynamic C directory
that has some predefined color schemes that can be used. Opening a .rgb file makes its colors
immediately active in all open editor windows. If you close the Environment Options window
without saving the changes, the colors will go back to whatever they were before you opened
the .rgb file.
 Graphical User Interface rabbit.com 264

http://www.rabbit.com

16.7.1.5 Code Templates Tab

Click the Code Template tab to display the following dialog.

As you can see, there are several predefined templates. The “Edit and Delete” buttons allow
the like-named operations on existing templates. The “Add” button gives the ability to create
custom templates.

To bring up the list of defined templates, Dynamic C must be in edit mode. Then you must do
one of the following: press <Ctrl+j> or right click in the editor window and choose “Insert
Code Template” from the popup menu or choose the Edit command menu and select “Insert
Code Template.” Clicking on the desired template name inserts that template at the cursor
location.
 Graphical User Interface rabbit.com 265

http://www.rabbit.com

16.7.1.6 Debug Windows Tab

Click on the Debug Windows tab to display the following dialog. Here is where you change the behav-
ior and appearance of Dynamic C debug windows.

Select which which debug windows will be opened after a successful compile under the General Pref-
erences section.

The Specific Preferences section is where you customize each type of window as selected in the Debug
Windows list. Colors and fonts are chosen here, as well as other options.

Stdio Window

The previous screen shows the options available for the Stdio windowi. They are described here.
You may modify or check as many as you would like.
 Graphical User Interface rabbit.com 266

http://www.rabbit.com

Automatic open
Check this to open the Stdio window the first time printf() is encountered.

Automatic Vertical Scroll
Check this to force vertical scroll when text is displayed outside the view of the window.
If this option is unchecked, the text display doesn’t change when the bottom of the win-
dow is passed; you have to use the scroll bar to see text beyond the bottom of the window.

Automatic Horizontal Scroll
Check this to force horizontal scroll when text is displayed outside the view of the win-
dow.

Automatic Delete in Edit Mode
Uncheck this to leave the Stdio window open when returning to edit mode. This feature
was introduced in Dynamic C 10.21. It is checked by default to behave the same as prior
versions of Dynamic C.

Log to File
Check this to direct output to a file. If the file does not exist it will be created. If it does
exist it will be overwritten unless you also check the option to append the file.

Rows
Specifies the maximum number of rows that can hold Stdio data.

Columns
Specifies the maximum number of columns that can hold Stdio data. When the maximum
column is reached, output automatically wraps to the next row.

Spaces In Tab
Tab stops display as the number of spaces specified here.

The various Find commands available on the Edit menu can be used directly in the Stdio win-
dow.

Starting with Dynamic C 10.21, the “Select All” item available on the Run menu can be used
to select all text in the Stdio window. The keyboard shortcut for “Select All” is Ctrl+A.

i. The macro STDIO_DEBUG_SERIAL may be defined to redirect Stdio output to a designated serial
port, this can be A, B, C or D. For more information, please see the sample program
Samples/STDIO_SERIAL.C.
 Graphical User Interface rabbit.com 267

http://www.rabbit.com

Assembly Window

The Assembly window displays the disassembled code from the program just compiled. All but the
opcode information may be toggled off and on using the checkboxes shown below. For more infor-
mation about this window see Section 13.3.5.

Show Addresses
Check this to show the logical address of the instruction in the far left column.

Show OpCodes
Check this to show the hexidecimal number corresponding to the opcode of the instruc-
tion.

Show Clock Cycles
Check this to show the number of clock cycles needed to execute the instruction in the far
right column. Zero wait states is assumed. Two numbers are shown for conditional return
instructions. The first is the number of cycles if the return is executed, the second is the
number of cycles if the return is not executed.

Sum Clock Cycles
Check this to total the clock cycles for a block of instructions. The block of instructions
must be selected and highlighted using the mouse. The total is displayed to the right of the
number of clock cycles of the last instruction in the block. This value assumes one execu-
tion per instruction, so looping and branching must be considered separately.

Use Syntax Highlighting
Toggle syntax highlighting. Click on the Syntax tab to set the different colors.
 Graphical User Interface rabbit.com 268

http://www.rabbit.com

Show Source
Check this to display the Dynamic C statement corresponding to the assembly code.

Show File Name in Source Line
Check this to prepend the file name to the Dynamic C statements corresponding to the
assembly code.

Register Window

For this window you must choose one of the following conditions: “Show register history” or
“Show registers as editable.” When the Register Contents window opens it will be in editable
mode by default. Selecting “Show Register history” will override the default setting.

Show register history
In this mode, a snapshot of the register values is displayed every time program execution
stops. The line (L:) and column (C:) of the cursor is noted, followed by the register and
flag values. The window is scrollable and sections may be selected with the mouse, then
copied and pasted.

Each time you single step in C or assembly changed data is highlighted in the Register
window. (This is also true for the Stack and Memory Dump windows.)

A click of the right mouse button brings up the menu pictured above. Choosing Change
Register Value(s)... brings up a dialog where you can enter new values for any of the reg-
isters, except SP, PC and LXPC.

Show registers as editable
In this mode, you can increment or decrement most of the registers, all but the SP, PC and
XPC registers.

This screen shows the Register Contents window in editable mode. It is divided into regis-
ters on the left and flags on the right.
 Graphical User Interface rabbit.com 269

http://www.rabbit.com

A click of the right mouse button on the register side will bring up the menu pictured here.
You can switch to history view or change register values for all but the SP, PC and LXPC
registers.

The option New Register Value will bring up a dialog to enter the new register value. Hex
values must have “0x” prepended to the value. Values without a leading “0x” are treated
as decimal.

A click of the right mouse button on the flags side of the window will bring up a menu
that lets you toggle the selected flag (Ctrl+Alt+T) or switch to history view (Ctrl+Alt+H).
 Graphical User Interface rabbit.com 270

http://www.rabbit.com

Memory Dump Window

For more information on using the Memory Dump window go to page 255.

Apply changes to all
Changes made in this dialog will be applied to all memory dump windows.

Allow automatic updates
The memory dump window will be updated every time program execution stops (break-
point, single step, etc.). Each time you single step changed data in the memory dump win-
dow is highlighted in reverse video.

Show tool bar
Each dump window has the option of a tool bar that has a button for updating the dumped
region and a text entry box to enter a new starting dump address.

Show address while scrolling
While using the scroll bar, a small popup box appears to the right of the scroll bar and dis-
plays the address of the first byte in the window. This allows you to know exactly where
you are as you scroll.

Show current byte in hint
The address and value of the byte that is under the cursor is displayed in a small popup
box.

Show current byte in title bar
The address and value of the byte that is under the cursor is displayed in the title bar.
 Graphical User Interface rabbit.com 271

http://www.rabbit.com

Segmented Dump Range
The memory dump window can display 3 different types of dumps. A dump of a logical
address will result in a 64k scrollable region (0x0000 - 0xffff). A dump of a physical
address will result in a dump of a 1M region (0x00000 - 0xfffff). A dump of an xpc:offset
address will result in either a 4k, 64k or 1M dump range, depending on how this option is
set.

If a 4k or 64k range is selected, the dump window will dump a 4k or 64k chunk of mem-
ory using the given xpc. If “Full Range” is selected, the window will dump 00:0000 -
ff:ffff. To increment or decrement the xpc, use the “+’ and “-” buttons located below and
above the scroll bar. These buttons are visible only for an xpc:offset dump where the range
is either 4k or 64k.

Watch Window

The Watches window configuration options, Enable watch expression evalution in flyover hint
and Show watch expression evaluation errors in flyover hint, do not actually affect the
Watches window. When checked, they allow you to use flyover hints in the source code win-
dow to see the value of watchable expressions.

Move the cursor over a variable to see its current value and over a function to see its logical
address or its return value. If you highlight the name of a function (e.g., my_function) you
will see the location of the code in memory. If you highlight the function call (e.g.,
my_function(my_parm)) the function will be called and you will see its return value. If
the cursor is over a structure member, the flyover hint will only contain information about the
structure, not the individual member.

Hardware Breakpoints

There are no configuration options for the Hardware Breakpoints window.

Stack Trace Window

There are no configuration options for the Stack Trace window.
 Graphical User Interface rabbit.com 272

http://www.rabbit.com

16.7.1.7 Print/Alerts Tab

Click on the Print/Alerts tab to display the following dialog. You may access both the Page Setup dia-
log and Print Preview from here.

The Page Setup dialog works in conjunction with the Print/Alerts dialog. The Page Setup dialog is
where you define the attributes of headers, footers, page numbering and margins for the printed page.
The Print/Alerts dialog is where you enable and disable these settings. You may also change the font
family and font size that will be used by the printer. This does not apply to the fonts used for headers
and footers, those are defined in the Page Setup dialog.

There are four checkboxes in the Alerts area of this dialog. The first two signal a successful compile
and download, one with a visual signal, the other auditory. The third checkbox detects if a file that is
currently open in Dynamic C has been modified by an external source, i.e., a third-party editor; and if
checked, will bring up a dialog box asking if you want to reload the modified file so that Dynamic C is
working with the most current version. The last checkbox, if checked, causes Dynamic C to query
when an attempt is made to compile a library file to make sure that is what is desired.

You may choose zero or more of these alerts.
 Graphical User Interface rabbit.com 273

http://www.rabbit.com

16.7.2 Project Options
Settings used by Dynamic C to communicate with a target, and to compile and run programs are acces-
sible by using the Project Options dialog box. The dialog box has tabs for various aspects of communi-
cating with the target, the BIOS and the compiler.

16.7.2.1 Communications Tab

This is where you setup for serial communication. The following options are available when the Use
Serial Connection radio button is selected.

Debug Baud Rate
This defaults to 115200 bps. It is the baud rate used for target communications after the pro-
gram has been downloaded.

Max Download Baud Rate
When baud negotiation is enabled, Dynamic C will start out at the selected baud rate and work
downwards until it reaches one both it and the target can handle.
 Graphical User Interface rabbit.com 274

http://www.rabbit.com

Disable Baud Negotiation
Dynamic C negotiates a baud rate for program download. (This helps with USB or anyone
who happens to have a high-speed serial port.) This default behavior may be disabled by
checking the Disable Baud Negotiation checkbox. When baud negotiation is disabled, the pro-
gram will download at 115k baud or 56k baud only. When enabled, it will download at speeds
up to 460k baud, as specified by Max Download Baud Rate.

Serial Port
This drop-down menu lists PC COM ports that may be connected to the Rabbit-based target. It
defaults to COM1. Starting with version 10.21, Dynamic C identifies which ones are USB
ports.

Stop Bits
The number of stop bits used by the serial drivers. Defaults to 2.

Enable Processor Verification
Processor detection is enabled by default. The connection is normally checked with a test
using the Data Set Ready (DSR) line of the PC serial connection. If the DSR line is not used as
expected, a false error message will be generated in response to the connection check.

To bypass the connection check, uncheck the “Enable Processor Verification” checkbox. This
allows custom designed systems to not connect the STATUS pin to the programming port.
Also, disabling the connection check allows non-standard PC ports or USB converters that
might not implement the DSR line to work.

Use USB to Serial Converter
Check this checkbox if a USB to serial converter cable is being used. Dynamic C will then
attempt to compensate for abnormalities in USB converter drivers. This mode makes the com-
munications more USB/RS232 converter friendly by allowing higher download baud rates and
introducing short delays at key points in the loading process. Checking this box may also help
non-standard PC ports to work properly with Dynamic C.
 Graphical User Interface rabbit.com 275

http://www.rabbit.com

16.7.2.2 Compiler Tab

Click on the Compiler tab to display the following dialog. If you are using a version of Dynamic C
prior to 10.21, you will not have the section labeled, “Attached Target Memory Type” shown in the
following screenshot. All other sections apply. If you are using a Rabbit 4000 with Dynamic C 10.21
or later, all sections shown below apply.

Run-Time Checking

These options, if checked, can allow a fatal error at run time. They also increase the amount of
code and cause slower execution, but they can be valuable debugging tools.

Array Indices
Check array bounds. This feature adds code for every array reference.
 Graphical User Interface rabbit.com 276

http://www.rabbit.com

Pointers
This was removed as an option in Dynamic C 10.50. In prior versions: check for invalid
pointer assignments. A pointer assignment is invalid if the code attempts to write to a
location marked as not writable. Locations marked not writable include the entire root
code segment. This feature adds code for every pointer reference.

 Functions marked as nodebug disable the run-time checking options selected in the GUI.

Type Checking

Prototypes
Performs strict type checking of arguments of function calls against the function proto-
type. The number of arguments passed must match the number of parameters in the proto-
type. In addition, the types of arguments must match those defined in the prototype.
Rabbit recommends prototype checking because it identifies likely run-time problems. To
use this feature fully, all functions should have prototypes (including functions imple-
mented in assembly).

Demotion
Detects demotion. A demotion automatically converts the value of a larger or more com-
plex type to the value of a smaller or less complex type. The increasing order of complex-
ity of scalar types is:

char
unsigned int
int
unsigned long
long
float

A demotion deserves a warning because information may be lost in the conversion. For
example, when a long variable whose value is 0x10000 is converted to an int value,
the resulting value is 0. The high-order 16 bits are lost. An explicit type casting can elimi-
nate demotion warnings. All demotion warnings are considered non-serious as far as
warning reports are concerned.

Pointer
Generates warnings if pointers to different types are intermixed without type casting.
While type casting has no effect in straightforward pointer assignments of different types,
type casting does affect pointer arithmetic and pointer dereferences. All pointer warnings
are considered non-serious as far as warning reports are concerned.

Optimize For

Allows for optimization of the program for size or speed. When the compiler knows more than
one sequence of instructions that perform the same action, it selects either the smallest or the
fastest sequence, depending on the programmer’s choice for optimization.

The difference made by this option is less obvious in the user application (where most code is
not marked nodebug). The speed gain by optimizing for speed is most obvious for functions
that are marked nodebug and have no auto local (stack-based) variables.
 Graphical User Interface rabbit.com 277

http://www.rabbit.com

Warning Reports

This option tells the compiler whether to report all warnings, no warnings or serious warnings
only. It is advisable to let the compiler report all warnings because each warning is a potential
run-time bug. Demotions (such as converting a long to an int) are considered non-serious
with regard to warning reports.

Store Program in

This option selects the memory type (Flash or RAM) in which to store the program.

A single, default BIOS source file defined in the system registry when installing Dynamic C is
used for compiling both to RAM and Flash.

Flashi
With this option, the compiler will load the BIOS to Flash when cold-booting, and will
compile the user program to Flash where it will normally reside. For boards with serial
boot flashes, the BIOS will copy the flash image to the fast RAM.

RAM
With this option, the compiler will load the BIOS to RAM when cold-booting and compile
the user program to RAM. This option is useful if you want to use breakpoints while you
are debugging your application, but you don’t want interrupts disabled while the debugger
writes a breakpoint to Flash (this can take 10 ms to 20 ms or more, depending on the Flash
type used). It is also possible to have a target that only has RAM for use as a slave proces-
sor, but this requires more than checking this option because hardware changes are neces-
sary that in turn require a special BIOS and coldloader.

Max Shown

The scroll menus labeled “Errors” and “Warnings” limit the number of error and warning mes-
sages displayed after compilation.

List Files

Checking this option generates an assembly list file for each compile. A list file contains the
assembly code generated from the source file.

The list file is placed in the same directory as your program, with the name
<Program Name>.LST. The list file has the same format as the Disassembled Code win-
dow. Each C statement is followed by the generated assembly code. Each line of assembly
code is broken down into memory address, opcode, instruction and number of clock cycles.
See page 293 for a screen shot of the Disassembled Code window.

Separate Instruction and Data Space

When checked, this option enables separate I&D space, doubling the amount of root code and
root data space available.

Please note that if you are compiling to a 128K RAM, there is only about 12K available for
user code when separate I&D space is enabled.

i. For boards with serial boot flashes, selecting “Flash” is the same as the command line compiler -mfr
option.
 Graphical User Interface rabbit.com 278

http://www.rabbit.com

Default Compile Mode

One of the following options will be used when Compile | Compile is selected from the main
menu of Dynamic C or when the keyboard shortcut <F5> is used. The setting shown here may
be overridden by choosing a different option in the Compile menu. The setup for targetless
compile may differ for some board series. Please check your user manual for differences in
setup.

Compile to attached target
a program is compiled and loaded to the attached target.

Compile defined target configuration to .bin file
a program is compiled and the image written to a .bin file. The target configuration used in
the compile is taken from the parameters specified in Options | Project Options. The Tar-
getless tab allows you to choose an already defined board type or you may define one of
your own.

Compile to .bin file using attached target
a program is compiled and the image written to a .bin file using the parameters of the
attached controller.

Attached Target Memory Type

One of the following options must be selected:

Detect Settings
Checking this option directs Dynamic C to query the attached board as to its program
flash type.

Flash Type
Uncheck “Detect Settings” to activate the “Flash Type” option. The choices are parallel
and serial flash.

Memory Width
Selecting “Parallel” for the flash type activates the “Memory Width” option, offering a
choice of 8- or 16-bit parallel flash.

In-line I/O

If checked, the built-in I/O functions (WrPortI(), RdPortI(), BitWrPortI() and
BitRdPortI()) will have efficient inline code generated instead of function calls if all
arguments are constants, with the exception of the 3rd parameter of BitWrPortI() and
WrPortI(), which may be any valid expression.

If this box is checked, but a call to one of the aforementioned functions is made with non-con-
stant arguments, (with the exception of the 3rd parameter for the 2 write functions) then a nor-
mal function call is generated.
 Graphical User Interface rabbit.com 279

http://www.rabbit.com

Advanced... Button

Click on this button to reveal the Advanced Compiler Options dialog.

Default Project Source File

Use this option to set a default source file for your project. If this box is checked, then
when you compile, the source file named here will be used and not the file that is in the
active editor window. If the file named here is not open, it will be opened into a new editor
window, which will be the new active editor window.

User Defined BIOS File

Use this option to change from the default BIOS to a user-specified file. Enter or select the
file using the browse button/text box underneath this option. The check box labeled “use”
must be selected or else the default file BIOS defined in the system registry will be used.
See the Rabbit 4000 Designer’s Handbook for more BIOS information.
 Graphical User Interface rabbit.com 280

http://www.rabbit.com

User Defined Lib Directory File (same as the command line compiler option “-lf”)

The Library Lookup information retrieved with <Ctrl+H> is parsed from the libraries
found in the “lib.dir” file, which is part of the Dynamic C installation. Checking the Use
box for User Defined Libraries File, allows the parsing of a user-defined replacement for
the “lib.dir” file. Library files must be listed in the “lib.dir” file (or its replacement) to be
available to a program.

If the function description headers are formatted correctly (see “Function Description
Headers” on page 32), the functions in the libraries listed in the user-defined replacement
for the “lib.dir” file will be available with <Ctrl+H> just like the user-callable functions
that come with Dynamic C.

Watch Code

Allow any expressions in watch expressions
This option causes any compilation of a user program to pull in all the utility functions
used for expression evaluation.

Restricting watch expressions (May save root code space)
Choosing this option means only utility code already used in the application program will
be compiled.

Debug Instructions and BIOS Inclusion

Include RST 28 instructions
There are three radio buttons for this option:

If “Always” is selected, the debug and nodebug keywords and compiler directives work as
normal. Debug code consists mainly of RST 28h instructions inserted after every C state-
ment. This selection also controls the definition of a compiler-defined macro symbol,
DEBUG_RST. If the menu item is checked, then DEBUG_RST is set to one, otherwise it is
zero.

If “Never, disables debugging” is selected, the compiler marks all code as nodebug and
debugging is not possible.

The default selection is “Auto, yes when compiling to target, no when compiling to .bin
file”.

The only reason to include RST 28 instructions if debugging is finished and the program
is ready to be deployed, is to allow some current (or planned) diagnostic capability of the
Rabbit Field Utility (RFU) to work in a deployed system. This option affects both code
compiled to .bin files and code compiled to the target. To run the program after compiling
to the target with RST 28 instruction included, disconnect the target from the program-
ming port and reset the target CPU.

Include BIOS
If this is checked, the BIOS, as well as the user program, will be included in the .bin
file. If you are creating a special program such as a cold loader that starts at address
0x0000, then this option should be unchecked.

When you are compiling a program to the attached target controller, the BIOS is always
included.
 Graphical User Interface rabbit.com 281

http://www.rabbit.com

16.7.2.3 Debugger Tab

Click on the Debugger tab to display the following dialog. This is where you enable/disable debugging
tools. Disabling parts of the debug kernel saves room to fit tight code space requirements.

Enable debug kernel

Leaving this option unchecked allows you to compile your application without the debug ker-
nel. You must check this option to set any of the other debug options.

Enable instruction level single stepping

If this is checked when the assembly window is open, single stepping will be by instruction
rather than by C statement. Unchecking this box will disable instruction level single stepping
on the target and, if the assembly window is open, the debug kernel will step by C statement.

Enable breakpoints

If this box is checked, the debug kernel will be able to toggle breakpoints on and off and will
be able to stop at set breakpoints. This is where you set the maximum number of breakpoints
the debug kernel will support. The debug kernel uses a small amount of root RAM for each
breakpoint, so reducing the number of breakpoints will slightly reduce the amount of root
RAM used.

If this box is unchecked, the debug kernel will be compiled without breakpoint support and the
user will receive an error message if they attempt to add a breakpoint.
 Graphical User Interface rabbit.com 282

http://www.rabbit.com

Enable watch expressions

If this box is checked, watch expressions will be enabled. This is where you set the maximum
number of watch expressions the debug kernel will support. The debug kernel uses a small
amount of root RAM for evaluating each watch expression, so reducing the number of watches
will slightly reduce the amount of root RAM used.

With the watch expression box unchecked, the debug kernel will be compiled without watch
expressions support and the user will receive an error message if they attempt to add a watch
expression.

Watch expressions automatically include the addition of structure members when a watch
expression is set on a struct. Some extended memory is reserved for handling watch expres-
sions on structs. As shown in the above screen shot, 512 bytes of xmem is reserved by default.
This can be changed to anything in the range 32 to 4096. Be aware that this watch memory is a
tradeoff: not only does it dictate the number and complexity of watched structs, but also
impacts the amount of memory available for xalloc() calls.

Enable stack tracing

If this box is checked the Stack Trace window is available to show the function call sequence
leading to any point at which the program is stopped. The Stack Trace window shows a con-
cise history of the execution path and values of local variables and function arguments that led
to the current breakpoint, all for a very small cost in execution time and BIOS memory.

To the right of the checkbox is a spin/edit box for entering the maximum number of bytes of
the current stack to transfer from the target at each breakpoint. The allowable range is 32 bytes
to 4096 bytes inclusive. The default is 4096 bytes. If the stack depth is smaller than the number
in this spin/edit box, only the depth number of bytes is transferred.

With the “Enable stack tracing” box unchecked, the debug kernel and the user program will be
compiled without stack tracing support. Changing the status of the checkbox or the number of
stack trace bytes forces a recompilation of the BIOS the next time the user program is com-
piled.

See “Stack Trace (Ctrl+T)” on page 295 for details on using this debug window.
 Graphical User Interface rabbit.com 283

http://www.rabbit.com

16.7.2.4 Defines Tab

The Defines tab brings up a dialog box with a window for entering (or modifying) a list of defines that
are global to any source file programs that are compiled and run. The macros that are defined here are
seen by the BIOS during its compilation.

Syntax:

DEFINITION[DELIMETER DEFINITION[DELIMETER DEFINITION[...]]]

DEFINITION: MACRONAME[[WS]=[WS]VALUE]

DELIMETER: ';' or 'newline'

MACRONAME: the same as for a macro name in a source file

WS: [SPACE[SPACE[...]]]

VALUE: CHR[CHR[...]]

CHR: any character except the delimeter character ';', which is entered as the character pair
"\;"

Notes:

• Do not continue a definition in this window with '\', simply continue typing as a long line will
wrap.

• In this window hitting the Tab key will not enter a tab character (\t), but will tab to the OK
button.

• The command line compiler honors all macros defined in the project file that it is directed to
use with the project file switch, -pf, or default.dcp if -pf is not used. See command line
compiler documentation.

• A macro redefined on the command line will supersede the definition read from the project file.
 Graphical User Interface rabbit.com 284

http://www.rabbit.com

Examples and File Equivalents:

Example:

DEF1;MAXN=10;DEF2

Equivalent:

#define DEF1
#define MAXN 10
#define DEF2

Example:

DEF1
MAXN = 10
DEF2

Equivalent:

#define DEF1
#define MAXN 10
#define DEF2

Example:

STATEMENT = A + B = C\;;DEF1=10

Equivalent:

#define STATEMENT A + B = C;
#define DEF1 10

Example:

STATEMENT = A + B = C\;
FORMATSTR = "name = %s\n"
DEF1=10

Equivalent:

#define STATEMENT A + B = C;
#define FORMATSTR "name = %s\n"
#define DEF1 10

16.7.2.5 Targetless Tab

Click on the Targetless tab to reveal three additional tabs: RTI File, Specify Parameters and Board
Selection. The setup for targetless compile may differ for some board series. Please check your user
manual for differences in setup.

RTI File

Click on this tab to open a Rabbit Target Information (RTI) file for viewing. The file is read-
only. You may not edit RTI files, but you may create one by selecting an entry in the Board
Selection list and clicking on the button Save as RTI. Or you may define a board configuration
in the Specify Parameters dialog and then save the information in an RTI file. Details follow.
 Graphical User Interface rabbit.com 285

http://www.rabbit.com

Specify Parameters

This is where you may define the parameters of a controller for later use in targetless compila-
tions.

The term “Primary Flash” refers to the Flash device connected to /CS0, not the total amount of
Flash available on the board.

The result may be saved to a RTI file for later use, or the result may be saved to the list of
board configurations. User defined ID codes are in the form 0xFFnn.

Board Selection

The list of board configurations is viewable from the Board Selection tab. The highlighted
entry in the list of board configurations is the one that will be used when the compilation uses
a defined target configuration, that is, when the Default Compile Mode on the Compiler tab is
set to “Compile defined target configuration to .bin file” and “Compile” or “Compile to .bin
file” is chosen from the Compile menu.

If you save to the list of board configurations by clicking on the button labeled “Update Board
Selection” on the Specify Parameters tab, then you must fill in all fields of the dialog. The
 Graphical User Interface rabbit.com 286

http://www.rabbit.com

baud rate, calculated from the value labeled “Base Frequency (MHz),” only applies to debug-
ging. The fastest baud rate for downloading is negotiated between the PC and the target.

To save to an RTI file only requires an entry in the CPU field.

The correct choice for the CPU field is found on the chip itself. The information is printed on
the second line from the top on both the Rabbit 4000 and 5000. The table below lists the possi-
ble values for these chips.

Where “#” is the revision number and the letters are associated information.

16.7.2.6 Include Path Tab

Dynamic C 10.60 introduced the standard C feature of #include. With the Include Path tab, you can tell
Dynamic C what paths to search for include files as seen in the following dialog.

To add a directory to the Include directories, you can either type it directly into the text field at
the bottom of the dialog, or you can press the "…" button which will bring up a dialog that

Rabbit Microprocessor non-RoHS RoHS

Rabbit 4000 n/a UL#T, JCT#T

Rabbit 5000 n/a JZ#T
 Graphical User Interface rabbit.com 287

http://www.rabbit.com

allows you to select the directory through a file browser interface. Pressing "Add" will then
add your new directory to the list.

You can also edit directories that are already in the list by first selecting the directory and then
using either the "Replace" or "Delete" buttons. "Replace" will replace the currently selected
Include directory with the text in the bottom text field. "Delete" will remove the currently
selected Include directory from the list.

The arrow buttons at the right allow the ordering of paths to be changed - select a path in the
list and move it up or down with the arrows to change the search order (the top item being the
first path searched).

NOTE: The include paths are unrelated to LIB.DIR and #use. They are only
used by #include.

16.7.3 Toolbars
Selecting this menu item reveals a list of all menu button groups, i.e., the groups of icons that appear in
toolbars beneath the title bar and the main menu items (File, Edit, …). This area is called the control
bar. To remove the control bar from the Dynamic C window, uncheck “View Menu Buttons.” Any
undocked toolbars (i.e., toolbars floating off the control bar) will still be visible. You undock a toolbar
by placing the cursor on the two vertical lines on the left side of the toolbar and dragging it off the con-
trol bar.

Each menu button group (File, Edit, Compile, Run, Options, Watch, Debug Window, WindowView
and Help) has a checkbox for choosing whether to make its toolbar visible on the control bar.

To quickly return to showing only the icons visible by default, select “Default Toolbars.”

Select the option, “Consolidate visible buttons to one toolbar” to do exactly that—create one toolbar
containing all visible icons. Doing that, enables the option Consolidated, which toggles the visibility of
the consolidated toolbar, even when it is undocked from the control bar.
 Graphical User Interface rabbit.com 288

http://www.rabbit.com

Select “Customize Button Groups” to bring up the Customize Menu Buttons window. This window
allows you to change which buttons are associated with which button group on the toolbar.

Choose a button group on the left side of the window; this causes the icons for the buttons in that group
to display on the right side of the window. Click and drag an icon from the right side of the window to
the desired button group on the toolbar.

To remove an icon from its button group, click and drag the icon off the toolbar or to another button
group on the toolbar. The Customize Menu Buttons window must be open to change the position of an
icon on the toolbar.
 Graphical User Interface rabbit.com 289

http://www.rabbit.com

16.8 Window Menu
Click the menu title or press <Alt+W> to display the Window menu.

You can choose to minimize, restore or close all open windows or just the open debug window or just the
open editor windows. The second group of items is a set of standard Windows commands that allow the
application windows to be arranged in an orderly way.

The Compiler Messages option is a toggle for displaying that window. This is only available if an error or
warning occurred during compilation.

Project Explorer

Starting with Dynamic C 10.60, you can organize your projects using multiple .c files as is common with
most C development tools. Dynamic C 10.60 introduces an interface to support this new functionality
called the Project Explorer. To access the Project Explorer window, click on
“Window->Project Explorer” or use the keyboard shortcut <Shift + F12>.

The Project Explorer window serves as your primary project interface for managing and compiling proj-
ects with multiple .c files. The project is defined as a list of .c files that will be linked into the final execut-
able BIN file and sent to the target. A "main file" (the top node in the file tree) is specified as the primary
application source code. The main file is treated as the first compiled file and will usually include the main
function. Note that this is an addition to the project functionality that exists in previous versions.

NOTE: Dynamic C .LIB files should not be added to the project explorer file
list.

Creating a new project or creating a project out of an old Dynamic C application is easy:

• Create your primary application .c source file (if it does not already exist) and save it

• Open the Project Explorer window

• Click “Add Files”

• Select all C files that are part of your project and click "Open"

• If your main file isn't at the top, right click on it and select "Set as Main File"

• Your new project is ready to run!
 Graphical User Interface rabbit.com 290

http://www.rabbit.com

Across the top of the Project Explorer window is a toolbar consisting of commonly-used operations. The
full list of new project operations can be accessed through the right-click menu. The operations of the proj-
ect menu are summarized in the table below.

Table 16-1. List of Project Explorer Commands

Command Function Hot key

Set as Main File
Indicates that the currently selected C file is the primary
application source file

Shift+Ctrl+F1

New Project Create a new project (closes current project)

Load Project Load a previously saved project (closes current project) Ctrl+P

Save Project Saves currently loaded project Ctrl+R

Save Project As Saves currently loaded project with a new name

Add Files
Adds existing files to the project list (file must be created
separately)

Ctrl+Ins

New File
Creates a new .c file, opening a new editor window (file must be
added to the project separately)

Crtl+N

Edit File
Opens the currently selected file for editing (you can also double-
click on a file in the list)

Enter

Remove File
Removes the currently selected file from the project list (does
NOT delete the file)

Del

Run Project
Compile, download, and run the current project on the attached
target

F9 (when Project
Explorer has focus)

Compile Project Compile and download the current project to the attached target
F5 (when Project
Explorer has focus)
 Graphical User Interface rabbit.com 291

http://www.rabbit.com

Compiling Projects
Pressing F5 with the Project Explorer window in focus compiles the entire project. Similarly, F9 runs the
entire project. Without the Project Explorer window in focus, Dynamic C functions exactly as previous
versions - F5 compiles the current file in focus and F9 runs it.

There are also a few additional menu items to facilitate compilation of projects. There are targeted compile
options for Flash/RAM and compiling to BIN file in addition to a Compile Project option, which is the
same as the operation accessible through the Project Explorer window. There is also a Run Project option
under the Run menu which can be used to run the currently loaded project at any time."

Debug Windows

The Debug Windows option opens a secondary menu, whose items are toggles for displaying the like-
named debug windows. You can scroll these windows to view larger portions of data, or copy information
from these windows and paste the information as text anywhere. More information is given below for each
window.

At the bottom of the Window menu is a list of current windows, including source code windows. Click on
one of these items to bring its window to the front, i.e., make it the active window.

Watch
Select Watch to activate or deactivate the Watches window. The Add Watch command on the Inspect
menu will do this too. The Watches window displays watch expressions whenever Dynamic C evalu-
ates watch expressions. A watch expression for a structure will automatically include all members of
the structure. Previous versions of Dynamic C required each struct member to be added as a separate
watch expression.

Keep in mind that when single stepping in assembly, the value of the watch expression may not be
valid for variables located on the stack (all auto variables). This is because the debug kernel does not
keep track of the pushes and pops that occur on the stack, and since watches of stack variables only
make sense in the context of the pushes and pops that have happened, they will not always be accurate
when assembly code is being single stepped.

Stdio
Select this option to activate or deactivate the Stdio window. The Stdio window displays output from
calls to printf(). If the program calls printf(), Dynamic C will activate the Stdio window auto-
matically if it is not already open, unless “Automatic open” is unchecked in the Debug Windows dia-
log in Options | Environment Options.

The various Find commands available on the Edit menu can be used directly in the Stdio window.
 Graphical User Interface rabbit.com 292

http://www.rabbit.com

Assembly (F10)
Select this option to activate or deactivate the Disassembled Code window. The Disassembled Code
window (aka., the Assembly window) displays machine code generated by the compiler in assembly
language format.

The “Disassemble at Cursor” or “Disassemble at Address” commands from the Inspect menu also acti-
vate the Disassembled Code window.

The Disassembled Code window displays Dynamic C statements followed by the assembly instruc-
tions for that statement. Each instruction is represented by the memory address on the far left, followed
by the opcode bytes, followed by the mnemonics for the instruction. The last column shows the num-
ber of cycles for the instruction, assuming no wait states. The total cycle time for a block of instruc-
tions will be shown at the lowest row in the block in the cycle-time column, if that block is selected
and highlighted with the mouse. The total assumes one execution per instruction, so the user must take
looping and branching into consideration when evaluating execution times.
 Graphical User Interface rabbit.com 293

http://www.rabbit.com

Use the mouse to select several lines in the Assembly window, and the total cycle time for the instruc-
tions that were selected will be displayed to the lower right of the selection. If the total includes an
asterisk, that means an instruction with an indeterminate cycle time was selected, such as ldir or
ret nz.

Right click anywhere in the Disassembled Code window to display the following popup menu:

Copy
Copies selected text in the Disassembled Code window to the clipboard.

Save to File
Opens the Save As dialog to save text selected in the Disassembled Code window to a file.
If you do not specify an extension, .dasm will be appended to the file name.

Move to Address
Opens the Disassemble at Address dialog so you can enter a new address.

Move to Execution Point
Highlights the assembly instruction that will execute next and displays it in the Disassem-
bled Code window.

Select ALL
Selects all text in the Disassembled Code window.

All but the last menu option of the remaining items in the popup menu toggle what is displayed in the
Disassembled Code window. The last menu option, “Use Syntax Highlighting,” displays the colors
that were set for the editor window in the Disassembled Code window.

To resize a column in the assembly window, move the mouse pointer to one of the vertical bars that is
between each of the column headers. For instance, if you move the mouse pointer between “Address”
and “Opcode” the pointer will change from an arrow to a vertical bar with arrows pointing to the right
and left. Hold the left mouse button down and drag to the right or left to grow or shrink the column.
 Graphical User Interface rabbit.com 294

http://www.rabbit.com

Register (F11)
Select this option to activate or deactivate the Register window. This window displays the processor
register set, including the status register. Letter codes indicate the bits of the status register (also known
as the flags register). The window also shows the source-code line and column at which the snapshot
of the register was taken.

It is possible to scroll back to see the progression of successive register snapshots. Register values may
be changed when program execution is stopped Registers PC, XPC, and SP may not be edited as this
can adversely affect program flow and debugging.

See “Register Window” on page 269 for more details on this window.

Stack (F12)
Select this option to activate or deactivate the Stack window. The Stack window displays the top 32
bytes of the run-time stack. It also shows the line and column at which the stack “snapshot” was taken.
It is possible to scroll back to see the progression of successive stack snapshots.

Each time you single step in C or assembly, changed data can be highlighted in the Stack window.
(This is also true for the Memory Dump and Register windows.)

Stack Trace (Ctrl+T)
The Stack Trace window displays the call sequence and the values of function arguments and local
variables of the currently running program. The screenshot shown here is the Stack Trace window
when Samples/Demo3.c is running. The window contents tell us that the function main() has
been called and that it has one local variable named secs, which currently has a value of 0.

The Depth value along the bottom of the Stack Trace window is the current number of bytes on the
stack. The Max Depth value is the maximum number of bytes pushed on the stack at any one time for
the current run of the program or since the Max Depth value was reset. The Max Depth value can be
reset by a right click in the Stack Trace window to bring up some menu options. Along with resetting
the Max Depth value back to zero (think of it like a car trip odometer) you can use the right click menu
to copy text from the Stack Trace window or to cause the source code file to become the active win-
dow. The source code file could be a library file if a library function is executing at the time the menu
option is requested.

Information
Select this option to activate the Information window, which displays how the memory is partitioned
and how well the compilation went.
 Graphical User Interface rabbit.com 295

http://www.rabbit.com

Note that some of the memory areas described here may be non-contiguous (e.g., 2 Flash compiles and the
XMEM code area with separate I&D). If an application is large enough to span into the non-contiguous
part of an area, the values presented in the Information window for that area are not accurate.

Table 16-2. Information Window

Name of Field Description of Field

Root code
The begin (base), end (top) and size of the root code area, expressed in logical
address format (16-bit).

XMEM code
The begin, end and size of the XMEM code area, expressed in physical address
format (20-bit).

Watch code
The begin, end and size of the watch code area, expressed in logical address
format (16-bit).

Stack
The begin, end and size of the run-time stack, expressed in logical address format
(16-bit).

Root data
The begin, end and size of the root data area, expressed in logical address format
(16-bit).

Root constants
The begin, end and size of the root constant area, expressed in physical address
format (20-bit).

Total code size The number of code bytes (including both root and XMEM code areas.

Total data size The number of data bytes (including both root and XMEM data areas

Lines compiled The number of lines compiled, including lines from library files.

Compile time The number of seconds taken to compile the program.

Compile speed Average speed of compilation measured in lines compiled per minute.

Board ID
A number identifying the board type. A list of board types is at
\Lib\default.h.
 Graphical User Interface rabbit.com 296

http://www.rabbit.com

16.9 Help Menu
Click the menu title or press <Alt+H> to select the HELP menu. The choices are given below:

Online Documentation
Opens a browser page and displays a file with links to other manuals. When installing Dynamic C from
CD, this menu item points to the hard disk; after a Web upgrade of Dynamic C, this menu item option-
ally points to the Web.

Function Lookup <Ctrl+H>
Displays descriptions for library functions. The keyboard shortcut is <Ctrl+H>.

Choosing a function is done in one of several ways. You may type the function name in the Function
Search entry box. Notice how both scroll areas underneath the entry box display the first function that
matches what you type. The functions to the left are listed alphabetically, while those on the right are
arranged in a tree format, displaying the libraries alphabetically with their functions collapsed under-
neath. You may scroll either of these two areas and have whatever you select in one area reflected in
the other area and in the text entry box. Click OK or press <Enter> to bring up the Function Descrip-
tion window.

If the cursor is on a function when Help | Function Lookup is selected (or when <Ctrl+H> is pressed)
then the Library Function Lookup dialog is skipped and the Function Description window appears
directly.
 Graphical User Interface rabbit.com 297

http://www.rabbit.com

If you click the View Source button, the Function Description window will close and the library that
contains the function that was in the window will open in an editor window. The cursor will be placed
at the function description of interest.

Clicking on the Browse button will open the Library Function Lookup window to allow you to search
for a new function description. Multiple Function Description windows may be open at the same time.

_ping <ICMP.LIB>

SYNTAX: int _ping(longword host, longword sequence_number);

KEYWORDS: tcpip, icmp, ping

DESCRIPTION: generate an ICMP request for host. NOTE: this is a
 macro which calls _send_ping_iface as follows:

 _send_ping_iface(host, sequence_number, 250, 0, NULL IF_ANY)

 that is with a hop count of 250, unspecified type of service,
 no identifier return, and any appropriate interface.

PARAMETER1: ip address to send ping
PARAMETER2: user defined sequence number

RETURN VALUE: 0 successful
 1 failed when sending packet
 -1 failed because could not resolve host hardware address.
SEE ALSO: _chk_ping, _sent_ping, _send_ping_iface
 Graphical User Interface rabbit.com 298

http://www.rabbit.com

Instruction Set Reference <Alt+F1>
Invokes an on-line help system and displays the alphabetical list of instructions for the Rabbit family
of microprocessors.

I/O Registers
Invokes an on-line help system that provides the bit values for all of the Rabbit I/O registers.

Keystrokes
Invokes an on-line help system and displays the keystrokes page. Although a mouse or other pointing
device may be convenient, Dynamic C also supports operation entirely from the keyboard.

Contents
Invokes an on-line help system and displays the contents page. From here view explanations of various
features of Dynamic C.

Tech Support
Opens a browser window to the Rabbit Technical Support Center web page, which contains links to
user forums, downloads for Dynamic C and information about 3rd party software vendors and devel-
opers.

Register Dynamic C
Allows you to register your copy of Dynamic C. A dialog is opened for entering your Dynamic C
serial number. From there you will be guided through the very quick registration process.

Tip of the Day
Brings up a window displaying some useful information about Dynamic C. There is an option to scroll
to another screen of Dynamic C information and an option to disable the feature. This is the same win-
dow that is displayed when Dynamic C initializes.

About
The About command displays the Dynamic C version number and the registered serial number.
 Graphical User Interface rabbit.com 299

http://www.rabbit.com

 17. COMMAND LINE INTERFACE

The Dynamic C command line compiler (dccl_cmp.exe) performs the same compilation and program
execution as its GUI counterpart (dcrabxx.exe), but is invoked as a console application from a DOS
window. It is called with a single source file program pathname as the first parameter, followed by optional
case-insensitive switches that alter the default conditions under which the program is run. The results of
the compilation and execution, all errors, warnings and program output, are directed to the console win-
dow and are optionally written or appended to a text file.

Note that the command line compiler resides in the directory where you installed Dynamic C. In the con-
sole window, you need to "cd" into the directory where the command line compiler resides. From
there you must type in the relative path of the sample you want to compile. Quotes are need if
there are spaces in the path. For example,

> cd c:\DCRabbit_10.40
> dccl_cmp samples\memory_usage.c
> dccl_cmp "c:\My Documents\my program.c"

17.1 Default States
The command line compiler uses the values of the environment variables that are in the project file indi-
cated by the -pf switch, or if the -pf switch is not used, the values are taken from default.dcp. For
more information, please see Chapter 18, “Project Files” on page 316.

The command line compiler will compile and run the specified source file. The exception to this is when
the project file “Default Compile Mode” is one of the options which compiles to a .bin file, in which case
the command line compiler will not run the program but will only compile the source to a .bin file. Com-
mand line help displayed to the console with

dccl_cmp

gives a summary of switches with defaults from the default project file, default.dcp, and

dccl_cmp -pf specified_project_name.dcp

gives a summary of switches with defaults from the specified project file. All project options including the
default compile mode can be overridden with the switches described in Section 17.4.

17.2 User Input
Applications requiring user input must be called with the -i option:

dccl_cmp myProgram.c -i myProgramInputs.txt

where myProgramInputs.txt is a text file containing the inputs as separate lines, in the order in
which myProgram.c expects them.
Dynamic C User’s Manual rabbit.com 300

http://www.rabbit.com

17.3 Saving Output to a File
The output consists of all program printf’s as well as all error and warning messages.

Output to a file can be accomplished with the -o option

dccl_cmp myProgram.c -i myProgramInputs.txt -o myOutputs.txt

where myOutputs.txt is overwritten if it exists or is created if it does not exist.

If the -oa option is used, myOutputs.txt is appended if it exists or is created if it does not.

17.4 Command Line Switches
Each switch must be separated from the others on the command line with at least one space or tab. Extra
spaces or tabs are ignored. The parameter(s) required by some switches must be added as separate text
immediately following the switch. Any of the parameters requiring a pathname, including the source file
pathname, can have imbedded spaces by enclosing the pathname in quotes.

17.4.1 Switches Without Parameters

-b

-bf-

-br

Description: Use compile mode: Compile to .bin file using attached target.

Factory Default: Compile mode: Compile to attached target.

GUI Equivalent: Compile program (F5) with Default Compile Mode set to "Compile to .bin
file using attached target" in Compiler tab of Project Options dialog.

Description: Undo user-defined BIOS file specification.

Factory Default: None.

GUI Equivalent: This is an advanced setting, viewable by clicking on the “Advanced” radio
button at the bottom of the Compiler tab of Project Options dialog. Uncheck
the “User Defined BIOS File” checkbox.

Description: Use compile mode: Compile defined target configuration to .bin file

Factory Default: Compile mode: Compile to attached target.

GUI Equivalent: Compile program (F5) with Default Compile Mode set to "Compile defined
target configuration to .bin file" in Compiler tab of Project Options dialog.
 Command Line Interface rabbit.com 301

http://www.rabbit.com

-d+

-d-

-h+

-h-

-id+

Description: Enable automatic detection of internal RAM.

Factory Default: Internal RAM will be automatically detected.

GUI Equivalent: None.

Description: Disable automatic detection of internal RAM. Set to false only for Rabbit
4000 CPUs.

Factory Default: Internal RAM will be automatically detected.

GUI Equivalent: None.

Description: Print program header information.

Factory Default: No header information will be printed.

GUI Equivalent: None.

Example: dccl_cmp samples\demo1.c -h -o myoutputs.txt
Header text preceding output of program:
**
4/5/01 2:47:16 PM
dccl_cmp.exe, Version 10.40P - English
samples\demo1.c
Options: -h+ -o myoutputs.txt
Program outputs:
Note: Version information refers to dcwd.exe with the same compiler core.

Description: Disable printing of program header information.

Factory Default: No header information will be printed.

GUI Equivalent: None.

Description: Enable separate instruction and data space.

Factory Default: Separate I&D space is disabled.

GUI Equivalent: Check “Separate Instruction & Data Space” in Project Options | Compiler.
 Command Line Interface rabbit.com 302

http://www.rabbit.com

-id-

-ini

-lf-

-mf

-mfr

-mr

Description: Disable separate instruction and data space.

Factory Default: Separate I&D space is disabled.

GUI Equivalent: Uncheck “Separate Instruction & Data Space” in the Project Options |
Compiler dialog box.

Description: Generates inline code for WrPortI(), RdPortI(), BitWrPortI()
and BitRdPortI() if all arguments are constants.

Factory Default: No inline code is generated for these functions.

GUI Equivalent: Check “Inline builtin I/O functions” in the Project Options | Compiler dialog
box.

Description: Undo Library Directory file specification.

Factory Default: No Library Directory file is specified.

GUI Equivalent: This is an advanced setting, viewable by clicking on the “Advanced” radio
button at the bottom of the Project Options | Compiler dialog box. Uncheck
“User Defined Lib Directory File.”

Description: Memory BIOS setting: Flash.

Factory Default: Memory BIOS setting: Flash.

GUI Equivalent: Select “Code and BIOS in Flash” in the Project Options | Compiler dialog
box.

Description: The BIOS and code are compiled to flash, and then the BIOS copies the flash
image to RAM to run the code.

 Factory Default: Memory BIOS setting: Flash

GUI Equivalent: Select “Code and BIOS in Flash, Run in RAM” in the Project Options |
Compiler dialog box.

Description: Memory BIOS setting: RAM.

Factory Default: Memory BIOS setting: Flash.
GUI Equivalent: Select “Code and BIOS in RAM” in the Project Options | Compiler dialog

box.
 Command Line Interface rabbit.com 303

http://www.rabbit.com

-n

-r

-rb+

-rb-

-rd+

-rd-

Description: Null compile for errors and warnings without running the program. The
program will be downloaded to the target.

Factory Default: Program is run.
GUI Equivalent: Select Compile | Compile or use the keyboard shortcut <F5>.

Description: Use compile mode: Compile to attached target.

Factory Default: Compile mode: Compile to attached target.

GUI Equivalent: Run program (F9)

Description: Include BIOS when compiling to a file.

Factory Default: BIOS is included if compiling to a file.

GUI Equivalent: This is an advanced setting, viewable by clicking on the “Advanced” radio
button at the bottom of the Project Options | Compiler dialog box. Check
“Include BIOS.”

Description: Do not include BIOS when compiling to a file.

Factory Default: BIOS is included if compiling to a file.

GUI Equivalent: This is an advanced setting, viewable by clicking on the “Advanced” radio
button at the bottom of the Project Options | Compiler dialog box. Uncheck
“Include BIOS.”

Description: Include debug code when compiling to a file.

Factory Default: RST 28 instructions are included

GUI Equivalent: This is an advanced setting, viewable by clicking on the “Advanced” radio
button at the bottom of the Project Options | Compiler dialog box. Select
“Always” or “Auto...” under “Include RST 28 instructions.”

Description: Do not include debug code when compiling to a file. This option is ignored if
not compiling to a file.

Factory Default: RST 28 instructions are included.

GUI Equivalent: This is an advanced setting, viewable by clicking on the “Advanced” radio
button at the bottom of the Project Options | Compiler dialog box. Select
“Never, disables debugging” under “Include RST 28 instructions.”
 Command Line Interface rabbit.com 304

http://www.rabbit.com

-ri+

-ri-

-rp+

-rp-

-rw+

-rw-

Description: Enable runtime checking of array indices.

Factory Default: Runtime checking of array indices is performed.

GUI Equivalent: Check “Array Indices” in the Project Options | Compiler dialog box.

Description: Disable runtime checking of array indices.

Factory Default: Runtime checking of array indices is performed.

GUI Equivalent: Uncheck “Array Indices” in the Project Options | Compiler dialog box.

Description: Enable runtime checking of pointers.

Factory Default: Runtime checking of pointers is performed.

GUI Equivalent: Check “Pointers” in the Project Options | Compiler dialog box.

Description: Disable runtime checking of pointers.

Factory Default: Runtime checking of pointers is performed.

GUI Equivalent: Uncheck “Pointers” in the Project Options | Compiler dialog box.

Description: Restrict watch expressions—may save root code space.

Factory Default: Allow any expressions in watch expressions.

GUI Equivalent: This is an advanced setting, viewable by clicking on the “Advanced” radio
button at the bottom of the Project Options | Compiler dialog box. Check
“Restrict watch expressions . . .”

Description: Don’t restrict watch expressions.

Factory Default: Allow any expressions in watch expressions.

GUI Equivalent: This is an advanced setting, viewable by clicking on the “Advanced” radio
button at the bottom of the Project Options | Compiler dialog box. Check
“Allow any expressions in watch expressions”
 Command Line Interface rabbit.com 305

http://www.rabbit.com

-sp

-sz

-td+

-td-

-tp+

-tp-

-tt+

Description: Optimize code generation for speed.

Factory Default: Optimize for speed.

GUI Equivalent: Choose “Speed” in the Project Options | Compiler dialog box.

Description: Optimize code generation for size.

Factory Default: Optimize for speed.

GUI Equivalent: Choose “Size” in the Project Options | Compiler dialog box.

Description: Enable type demotion checking.

Factory Default: Type demotion checking is performed.

GUI Equivalent: Check “Demotion” in the Project Options | Compiler dialog box.

Description: Disable type demotion checking.

Factory Default: Type demotion checking is performed.

GUI Equivalent: Uncheck “Demotion” in the Project Options | Compiler dialog box.

Description: Enable type checking of pointers.

Factory Default: Type checking of pointers is performed.

GUI Equivalent: Check “Pointer” in the Project Options | Compiler dialog box.

Description: Disable type checking of pointers.

Factory Default: Type checking of pointers is performed.

GUI Equivalent: Uncheck “Pointer” in the Project Options | Compiler dialog box.

Description: Enable type checking of prototypes.

Factory Default: Type checking of prototypes is performed.

GUI Equivalent: Check “Prototype” in the Project Options | Compiler dialog box.
 Command Line Interface rabbit.com 306

http://www.rabbit.com

-tt-

-vp+

-vp-

-wa

-wn

-ws

Description: Disable type checking of prototypes.

Factory Default: Type checking of prototypes is performed.

GUI Equivalent: Uncheck “Prototype” in the Project Options | Compiler dialog box.

Description: Verify the processor by enabling a DSR check. This should be disabled if a
check of the DSR line is incompatible on your system for any reason.

Factory Default: Processor verification is enabled.

GUI Equivalent: Check “Enable Processor verification” in the Project Options |
Communications dialog box.

Description: Assume a valid processor is connected.

Factory Default: Processor verification is enabled.

GUI Equivalent: Uncheck “Enable Processor verification” in the Project Options |
Communications dialog box.

Description: Report all warnings.

Factory Default: All warnings reported.

GUI Equivalent: Select “All” under “Warning Reports” in the Project Options | Compiler
dialog box.

Description: Report no warnings.

Factory Default: All warnings reported.

GUI Equivalent: Select “None” under “Warning Reports” in the Project Options | Compiler
dialog box.

Description: Report only serious warnings.

Factory Default: All warnings reported.

GUI Equivalent: Select “Serious Only” under “Warning Reports” in the Project Options |
Compiler dialog box.
 Command Line Interface rabbit.com 307

http://www.rabbit.com

17.4.2 Switches Requiring a Parameter
The following switches require one or more parameters.

-bf BIOSFilePathname

-clf ColdLoaderFilePathname

-d MacroDefinition

Description: Compile using a BIOS file found in BIOSFilePathname.
Factory Default: \Bios\RabbitBios.c
GUI Equivalent: This is an advanced setting, viewable by clicking on the “Advanced” radio

button at the bottom of the Project Options | Compiler dialog box. Check the
box under “User Defined BIOS File” and then fill in the pathname for the
new BIOS file.

Example: dccl_cmp myProgram.c -bf MyPath\MyBIOS.lib

Description: Compile using cold loader file found in ColdLoaderFilePathname.

Factory Default: \Bios\ColdLoad.bin

GUI Equivalent: None.

Example: dccl_cmp myProgram.c -clf MyPath\MyColdloader.bin

Description: Define macros and optionally equate to values. The following rules apply and
are shown here with examples and equivalent #define form:
Separate macros with semicolons.

dccl_cmp myProgram.c -d DEF1;DEF2
#define DEF1
#define DEF2

A defined macro may be equated to text by separating the defined macro from
the text with an equal sign (=).

dccl_cmp myProgram.c -d DEF1=20;DEF2
#define DEF1 20
#define DEF2

Macro definitions enclosed in quotation marks will be interpreted as a single
command line parameter.

dccl_cmp myProgram.c -d “DEF1=text with spaces;DEF2”
#define DEF1 text with spaces
#define DEF2

A backslash preceding a character will be kept except for semicolon, quote
and backslash, which keep only the character following the backslash. An
escaped semicolon will not be interpreted as a macro separator and an
escaped quote will not be interpreted as the quote defining the end of a
command line parameter of text.

dccl_cmp myProgram.c -d DEF1=statement\;;ESCQUOTE=\\\”
#define DEF1 statement;
#define ESCQUOTE \”
dccl_cmp myProg.c -d “FSTR = \”Temp = %6.2F DEGREES C\n\””
#define FSTR “Temp = %6.2f degrees C\n”

Factory Default: None.

GUI Equivalent: Select the Defines tab from Project Options.
 Command Line Interface rabbit.com 308

http://www.rabbit.com

-d- MacroToUndefine

-eto EthernetResponseTimeout

-i InputsFilePathname

-lf LibrariesFilePathname

Description: Undefines a macro that might have been defined in the project file. If a macro
is defined in the project file read by the command line compiler and the same
macro name is redefined on the command line, the command line definition
will generate a warning. A macro previously defined must be undefined with
the -d- switch before redefining it. Undefining a macro that has not been
defined has no consequence and so is always safe although possibly
unnecessary. In the example, all compilation settings are taken from the project
file specified except that now the macro MAXCHARS was first undefined before
being redefined.

Factory Default: None.

GUI Equivalent: None.

Example: dccl_cmp myProgram.c -pf myproject -d- MAXCHARS -d
MAXCHARS=512

Description: Time in milliseconds Dynamic C waits for a response from the target on any
retry while trying to establish Ethernet communication.

Factory Default: 8000 milliseconds.

GUI Equivalent: None.

Example: dccl_cmp myProgram.c -eto 6000

Description: Execute a program that requires user input by supplying the input in a text
file. Each input required should be entered into the text file exactly as it
would be when entered into the Stdio Window in dcwd.exe. Extra input is
ignored and missing input causes dccl_cmp to wait for keyboard input at
the command line.

Factory Default: None.

GUI Equivalent: Using -i is like entering inputs into the Stdio Window.

Example dccl_cmp myProgram.c -i MyInputs.txt

Description: Compile using a file found in LibrariesFilePathname which lists all libraries
to be made available to your programs.

Factory Default: Lib.dir.

GUI Equivalent: This is an advanced setting, viewable by clicking on the “Advanced” radio
button at the bottom of the Project Options | Compiler dialog box. Check the
box under “User Defined Lib Directory File” and then fill in the pathname for
the new Lib.dir.

Example dccl_cmp myProgram.c -lf MyPath\MyLibs.txt
 Command Line Interface rabbit.com 309

http://www.rabbit.com

-ne maxNumberOfErrors

-nw maxNumberOfWarnings

-o OutputFilePathname

-oa OutputFilePathname

Description: Change the maximum number of errors reported.

Factory Default: A maximum of 10 errors are reported.

GUI Equivalent: Enter the maximum number of errors to report under “Max Shown” in the
Project Options | Compiler dialog box.

Example: Allows up to 25 errors to be reported:
dccl_cmp myProgram.c -ne 25

Description: Change the maximum number of warnings reported.

Factory Default: A maximum of 10 warnings are reported.

GUI Equivalent: Enter the maximum number of warnings to report under “Max Shown” in the
Project Options | Compiler dialog box.

Example: Allows up to 50 warnings to be reported:
dccl_cmp myProgram.c -nw 50

Description: Write header information (if specified with -h) and all program errors,
warnings and outputs to a text file. If the text file does not exist it will be
created, otherwise it will be overwritten.

Factory Default: None.

GUI Equivalent: Go to Option | Environment Options and select the Debug Windows tab.
Under “Specific Preferences” select “Stdio” and check “Log to File” under
“Options.”

Example dccl_cmp myProgram.c -o MyOutput.txt
dccl_cmp myProgram.c -o MyOutput.txt -h
dccl_cmp myProgram.c -h -o MyOutput.txt

Description: Append header information (if specified with -h) and all program errors,
warnings and outputs to a text file. If the text file does not exist it will be
created, otherwise it will be appended.

Factory Default: None.

GUI Equivalent: Go to Option | Environment Options and select the Debug Windows tab.
Under “Specific Preferences” select “Stdio” and check “Log to File” under
“Options,” then check “Append” and specify the filename.

Example dccl_cmp myProgram.c -oa MyOutput.txt
 Command Line Interface rabbit.com 310

http://www.rabbit.com

-pbf PilotBIOSFilePathname

-pf projectFilePathname

-ret Retries

-rf RTIFilePathname

Description: Compile using a pilot BIOS found in PilotBIOSFilePathname.

Factory Default: \Bios\Pilot.bin

GUI Equivalent: None.

Example: dccl_cmp myProgram.c -pbf MyPath\MyPilot.bin

Description: Specify a project file to read before the command line switches are read. The
environment settings are taken from the project file specified with -pf, or
default.dcp if no other project file is specified. Any switches on the
command line, regardless of their position relative to the -pf switch, will
override the settings from the project file.

Factory Default: The project file default.dcp.

GUI Equivalent: Select File | Project | Open...

Example dccl_cmp myProgram.c -ne 25 -pf myProject.dcp
dccl_cmp myProgram.c -ne 25 -pf myProject
Note: The project file extension, .dcp, may be omitted.

Description: The number of times Dynamic C attempts to establish communication if the
given timeout period expires.

Factory Default: 3

GUI Equivalent: None.

Example: dccl_cmp myProgram.c -ret 5

Description: Compile to a .bin file using targetless compilation parameters found in
RTIFilePathname. The resulting compiled file will have the same pathname
as the source (.c) file being compiled, but with a .bin extension.

Factory Default: None.

GUI Equivalent:

Example: dccl_cmp myProgram.c -rf MyTCparameters.rti
dccl_cmp myProgram.c -rf “My Long
Pathname\MyTCparameters.rti”
 Command Line Interface rabbit.com 311

http://www.rabbit.com

-rti BoardID:CpuID:CrystalSpeed:RAMSize:FlashSize

-s Port:Baud:Stopbits

-sto SerialResponseTimeout

Description: Compile to a .bin file using parameters defined in a colon separated format
of BoardID:CpuID:CrystalSpeed:RAMSize:FlashSize. The resulting
compiled file will have the same pathname as the source (.c) file being
compiled, but with a .bin extension.
BoardID - Hex integer
CpuID - 4000r# or 5000r# where # is the revision number of the CPU:

4000r0: corresponds to UL1T/JCT1T
5000r0: corresponds to XYZ1T/ABC1T/CBS1T

(The file TCData.ini in the root installation directory for Dynamic C
identifies all current CPU identifiers.)
CrystalSpeed - Base frequency, decimal floating point, in MHz
RAMSize - Decimal, in KBytes
FlashSize - Primary flash, decimal, in KBytes.

Factory Default: None.

GUI Equivalent: Select Options | Project Options | Targetless | Board Selection and choose a
board from the list; then select Compile | Compile to .bin File | Compile to
Flash

Example: dccl_cmp myProgram.c -rti
0x0700:2000r3:11.0592:512:256

Description: Use serial transmission with parameters defined in a colon separated format
of Port:Baud:Stopbits:BackgroundTx.

Port: 1, 2, 3, 4, 5, 6, 7, 8

Baud: 110, 150, 300, 600, 1200, 2400, 4800, 9600, 12800, 14400,
19200, 28800, 38400, 57600, 115200, 128000, 230400, 256000

Stopbits: 1, 2

Include all serial parameters in the prescribed format even if only one is being
changed.

Factory Default: 1:115200:1:0

GUI Equivalent: Select the Communications tab of Project Options. Select the “Use Serial
Connection” radio button.

Example: Changing port from default of 1 to 2:
dccl_cmp myProgram.c -s 2:115200:1:0

Description: Time in milliseconds Dynamic C waits for a response from the target on any
retry while trying to establish serial communication.

Factory Default: 300 ms.

GUI Equivalent: None.
 Command Line Interface rabbit.com 312

http://www.rabbit.com

17.5 Examples
The following examples illustrate using multiple command line switches at the same time. If the switches
on the command line are contradictory, such as -mr and -mf, the last switch (read left to right) will be
used.

Example 1

In this example, all current settings of default.dcp are used for the compile.

dccl_cmp samples\timerb\timerb.c

Example 2

In this example, all settings of myproject.dcp are used, except timer_b.c is compiled to
timer_b.bin instead of to the target and warnings or errors are written to myouputs.txt.

dccl_cmp samples\timerb\timer_b.c -o myoutputs.txt -b -pf myproject

Example 3

These examples will compile and run myProgram.c with the current settings in default.dcp but
using different defines, displaying up to 50 warnings and capture all output to one file with a header for
each run.

dccl_cmp myProgram.c -d MAXCOUNT=99 -nw 50 -h -o myOutput.txt
dccl_cmp myProgram.c -d MAXCOUNT=15 -nw 50 -h -oa myOutput.txt
dccl_cmp myProgram.c -d MAXCOUNT=15 -d DEF1 -nw 50 -h -oa myOutput.txt

The first run could have used the -oa option if myOutput.txt were known to not initially exist.
myProgram.c presumably uses a constant MAXCOUNT and contains one or more compiler directives
that react to whether or not DEF1 is defined.

17.6 Command Line RFU
There is also a command line version of the RFU. On the command line specify:

clRFU SourceFilePathName [options]

where SourceFilePathName is the path name of the .bin file to load to the connected target. The
options are as follows:

-cl ColdLoaderPathName

Example: dccl_cmp myProgram.c -sto 400

Description: Select a new initial loader.

Default: \bios\coldload.bin

RFU GUI Equivalent: From the Setup | Boot Strap Loaders dialog box, type in a pathname or
click on the ellipses radio button to browse for a file.
 Command Line Interface rabbit.com 313

http://www.rabbit.com

-fi Flash.ini PathName

-pb PilotBiosPathName

-s port:baudrate

-v

-vp+

Example: clRFU myProgram.bin -cl myInitialLoader.bin

Description: Select a new file that Dynamic C will use to externally define flash.

Default: flash.ini

RFU GUI Equivalent: From the “Choose File Locations...” dialog box, visible by selecting
Setup | File Locations, type in a pathname or click on the ellipses radio
button to browse for a file.

Example: clRFU myProgram.bin -fi myflash.ini

Description: Select a new secondary loader.

Default: \bios\pilot.bin

RFU GUI Equivalent: From the Setup | Boot Strap Loaders dialog box, type in a pathname or
click on the ellipses radio button to browse for a file.

Example: clRFU myProgram.bin -pb mySecondaryLoader.bin

Description: Select the comm port and baud rate for the serial connection.

Default: COM1 and 115,200 bps

RFU GUI Equivalent: From the Setup | Communications dialog box, choose values from the
Baud Rate and Comm Port drop-down menus.

Example: clRFU myProgram.bin -s 2:115200

Description: Causes the RFU version number and additional status information to be
displayed.

Default: Only error messages are displayed.

RFU GUI Equivalent: Status information is displayed by default and there is no option to turn it
off.

Example: clRFU myProgram.bin -v

Description: Verify the presence of the processor by using the DSR line of the PC
serial connection.

Default: The processor is verified.

RFU GUI Equivalent: From the “Communications Options” dialog box, visible by selecting
Setup | Communications, check the “Enable Processor Detection” option.

Example: clRFU myProgram.bin -vp+
 Command Line Interface rabbit.com 314

http://www.rabbit.com

-vp-

-usb+

-usb-

Description: Do not verify the presence of the processor.

Default: The processor is verified.

RFU GUI Equivalent: From the “Communications Options” dialog box, visible by selecting
Setup | Communications, uncheck the “Enable Processor Detection”
option.

Example: clRFU myProgram.bin -vp-

Description: Enable use of USB to serial converter.

Default: The use of the USB to serial converter is disabled.

RFU GUI Equivalent: From the “Communications Options” dialog box, visible by selecting
Setup | Communications, check the “Use USB to Serial Converter”
option.

Example: clRFU myProgram.bin -usb+

Description: Disable use of USB to serial converter.

Default: The use of the USB to serial converter is disabled.

RFU GUI Equivalent: From the “Communications Options” dialog box, visible by selecting
Setup | Communications, uncheck the “Use USB to Serial Converter”
option.

Example: clRFU myProgram.bin -usb-
 Command Line Interface rabbit.com 315

http://www.rabbit.com

 18. PROJECT FILES

In Dynamic C, a project is an environment that consists of opened source files, a BIOS file, available
libraries, and the conditions under which the source files will be compiled. The File Open directory last

used will be stored in the project filei. Projects allow different compilation environments to be separately
maintained.

18.1 Project File Names
A project maintains a compilation environment in a file with the extension .dcp.

18.1.1 Factory.dcp
The environment originally shipped from the factory is kept in a project file named factory.dcp. If
Dynamic C cannot find this file, it will be recreated automatically in the Dynamic C exe path. The factory
project can be opened at any time and the environment changed and saved to another project name, but
factory.dcp will not be changed by Dynamic C.

18.1.2 Default.dcp
This default project file is originally a copy of factory.dcp and will be automatically recreated as such
in the exe path if it cannot be found when Dynamic C opens. The default project will automatically
become the active project with File | Project... | Close.

The default project is special in that the command line compiler will use it for default values unless
another project file is specified with the -pf switch, in which case the settings from the indicated project
will be used.

Please see Chapter 17 for more details on using the command line compiler.

18.1.3 Active Project
Whenever a project is selected, the current project related data is saved to the closing project file, the new
project settings become active, and the (possibly new) BIOS will automatically be recompiled prior to
compiling a source file in the new environment.

The active project can be factory.dcp, default.dcp or any project you create with
File | Project... | Save As... When Dynamic C opens, it retrieves the last used project, or the default project
if being opened for the first time or if the last used project cannot be found.

If a project is closed with the File | Projects... | Close menu option, the default project, default.dcp,
becomes the active project.

i. If DC is started with a cwd (current working directory) other than the exe directory, the cwd will be used
instead of the one saved in the project file. This can happen if Dynamic C is started from a Windows
shortcut with a specified “starts in” directory.
Dynamic C User’s Manual rabbit.com 316

http://www.rabbit.com

The active project file name, without path or extension, is always shown in the leftmost panel of the status
bar at the bottom of the Dynamic C main window and is prepended to the Dynamic C version in the title
bar except when the active project is the default project.

Changes made to the compilation environment of Dynamic C are automatically updated to the active proj-
ect, unless the active project is factory.dcp.

18.2 Updating a Project File
Unless the active project is factory.dcp, changes made in the Project Options dialog will cause the
active project file to be updated immediately:

Opening or closing files will not immediately update the active project file. The project file state of the
recently used files appearing at the bottom of the File menu selection and any opened files in edit windows
will only by updated when the project closes or when File | Projects... | Save is selected. The Message,
Assembly, Memory Dump, Registers and Stack debug windows are not edit windows and will not be
saved in the project file if you exit Dynamic C while debugging.

18.3 Menu Selections
The menu selections for project files are available in the File menu. The choices are the familiar ones: Cre-

ate..., Open..., Save, Save As... and Close.

Choosing File | Project | Open... will bring up a dialog box to select an existing project filename to
become the active project. The environment of the previous project is saved to its project file before it is
replaced (unless the previous project is factory.dcp). The BIOS will automatically be recompiled
prior to the compilation of a source file within the new environment, which may have a different library
directory file and/or a different BIOS file.

Choosing File | Project... | Save will save the state of the environment to the active project file, including
the state of the recently used filelist and any files open in edit windows. This selection is greyed out if the
active project is factory.dcp. This option is of limited use since any project changes will be updated
immediately to the file and the state of the recently used filelist and open edit windows will be updated
when the project is closed for any reason.

Choosing File | Project... | Save as... will bring up a dialog box to select a project file name. The file will
be created or, if it exists, it will be overwritten with the current environment settings. This environment
will also be saved to the active project file before it is closed and its copy (the newly created or overwritten
project file) will become active.

Choosing File | Project... | Close first saves the environment to the active project file (unless the active
project is factory.dcp) and then loads the Dynamic C default project, default.dcp, as the active
project. As with Open..., the BIOS will automatically be recompiled prior to the compilation of a source
file within the new environment. The new environment may have a different library directory file and/or a
different BIOS file.
 Project Files rabbit.com 317

http://www.rabbit.com

18.4 Command Line Usage
When using the command line compiler, dccl_cmp.exe, a project file is always read. The default proj-
ect, default.dcp, is used automatically unless the project file switch, -pf, specifies another project file
to use. The project settings are read by the command line compiler first even if a -pf switch comes after the
use of other switches, and then all other switches used in the command line are read, which may modify
any of the settings specified by the project file.

The default behavior given for each switch in the command line documentation is with reference to the
factory.dcp settings, so the user must be aware of the default state the command line compiler will
actually use. The settings of default.dcp can be shown by entering dccl_cmp alone on the com-
mand line. The defaults for any other project file can be shown by following dccl_cmp by a the project
file switch without a source file. The command:

dccl_cmp

shows the current state of all default.dcp settings. The command:

dccl_cmp -pf myProject

shows the current state of all myProject.dcp settings. And the command:

dccl_cmp myProgram.c -ne 25 -pf myProject

reads myProject.dcp, then compiles and runs myProgram.c, showing a maximum of 25 errors.

The command line compiler, unlike Dynamic C, never updates the project file it uses. Any changes desired
to a project file to be used by the command line compiler can be made within Dynamic C or changed by
hand with an editor.

Making changes by hand should be done with caution. Use an editor that does not introduce carriage
returns or line feeds with wordwrap, which may be a problem if the global defines or any file pathnames
are lengthy strings. Be careful to not change any of the section names in brackets or any of the key phrases
up to and including the “=.”

If a macro is defined on the command line with the -d switch, any value that may have been defined within
the project file used will be overwritten without warning or error. Undefining a macro with the -d- switch
has no consequence if it was not previously defined.
 Project Files rabbit.com 318

http://www.rabbit.com

 19. HINTS AND TIPS

This chapter offers hints on how to speed up an application and how to store persistent data at run time.

19.1 A User-Defined BIOS
The file RabbitBIOS.c is a wrapper that permits a choice of which BIOS to compile. A modular design
has many of the configuration macros in separate configuration libraries. The BIOS file and configuration
libraries are located in LIB\BIOSLIB. Table 19-1 lists the new files and gives a brief description of their
content.

To create a user-defined BIOS, begin with a copy of STDBIOS.C to modify. It is prudent to save
STDBIOS.C as is and rename the modified file.

The Dynamic C GUI offers an option for hooking a user-defined BIOS into the system. See the description
of the “Advanced... Button” for details on using this GUI option. You will need to consider the configura-
tion files and associated macros described in Table 19-1.

Table 19-1. BIOS File and Configuration Libraries

File Name Description

STDBIOS.C
Most of the code from RabbitBIOS.c was
moved here.

CLONECONFIG.LIB Macros for configuring cloning.

DKCONFIG.LIB Macros for configuring the debug kernel

ERRLOGCONFIG.LIB
Macros for configuring non-RabbitSys error
logging. RabbitSys has its own error logging
method.

MEMCONFIG.LIB Macros for configuring memory organization.

SYSCONFIG.LIB
Macros for other system-level configuration
options, such as the clock doubler and the
specturm spreader.

TWOPROGRAMCONFIG.LIB
Macros for configuring split memory for the old-
style DLM/DLP.

FATCONFIG.LIB Macros for configuring the FAT file system.
Dynamic C User’s Manual rabbit.com 319

http://www.rabbit.com

19.2 Efficiency
There are a number of methods that can be used to reduce the size of a program, or to increase its speed.
Let’s look at the events that occur when a program enters a function.

• The function saves IX on the stack and makes IX the stack frame reference pointer (if the program is in
the useix mode).

• The function creates stack space for auto variables.

• The function sets up stack corruption checks if stack checking is enabled (on).

• The program notifies Dynamic C of the entry to the function so that single stepping modes can be
resolved (if in debug mode).

The last two consume significant execution time and are eliminated when stack checking is disabled or if
the debug mode is off.

19.2.1 Nodebug Keyword
When the PC is connected to a target controller with Dynamic C running, the normal code and debugging
features are enabled. Dynamic C places an RST 28H instruction at the beginning of each C statement to
provide locations for breakpoints. This allows the programmer to single step through the program or to set
breakpoints. (It is possible to single step through assembly code at any time.) During debugging there is
additional overhead for entry and exit bookkeeping, and for checking array bounds, stack corruption, and
pointer stores. These “jumps” to the debugger consume one byte of code space and also require execution
time for each statement.

At some point, the Dynamic C program will be debugged and can run on the target controller without the
Dynamic C debugger. This saves on overhead when the program is executing. The nodebug keyword is
used in the function declaration to remove the extra debugging instructions and checks.

nodebug int myfunc(int x, int z){
...

}

If programs are executing on the target controller with the debugging instructions present but without
Dynamic C attached, the call to the function that handles RST 28H instructions in the vector table will be
treated as a NOP by the processor when in debug mode. The target controller will work, but its perfor-
mance will not be as good as when the nodebug keyword is used.

If the nodebug option is used for the main() function, the program will begin to execute as soon as it fin-
ishes compiling (as long as the program is not compiling to a file).

Use the directive #nodebug anywhere within the program to enable nodebug for all statements follow-
ing the directive. The #debug directive has the opposite effect.

Assembly code blocks are nodebug by default, even when they occur inside C functions that are marked
debug, therefore using the nodebug keyword with the #asm directive is usually unnecessary.
 Hints and Tips rabbit.com 320

http://www.rabbit.com

19.2.2 In-line I/O
The built-in I/O functions (WrPortI(), RdPortI(), BitWrPortI() and BitRdPortI()) can be
generated as efficient in-line code instead of function calls. All arguments must be constant. A normal
function call is generated if the I/O function is called with any non-constant arguments. To enable in-line
code generation for the built-in I/O functions check the option “Inline builtin I/O functions” in the Com-
piler dialog, which is accessible by clicking the Compiler tab in the Project Options dialog.

19.3 Run-time Storage of Data
Data that will never change in a program can be put in flash by initializing it in the declarations. The com-
piler will put this data in flash. See the description of the const, xdata, and xstring keywords for
more information.

If data must be stored at run-time and persist between power cycles, there are several ways to do this using
Dynamic C functions:

• User Block - Recommended method for storing non-file data. Factory-stored calibration constants live
in the User block for boards with analog I/O. Space here is limited to as small as (8K-
sizeof(SysIDBlock)) bytes, or less if there are calibration constants. For specific information
about the User block on your board, open the sample programs userblock_info.c and/or
idblock_report.c. The latter program will print, among other things, the location of the
User block.

• WriteFlash2 - This function is provided for writing arbitrary amounts of data directly to arbitrary
addresses in the second flash.

• Battery-Backed RAM - Storing data here is as easy as assigning values to global variables or local
static variables. The file system can also be configured to use RAM.

The life of a battery on a Rabbit board is specified in the user’s manual for that board; some
boards have batteries that last several years, most board have batteries that come close to or
surpass the shelf-life of the battery. If it is important that battery-backed data not be lost during
a power failure, know how long your battery will last and plan accordingly.

19.3.1 User Block
The User block is an area near the top of flash reserved for run-time storage of persistent data and calibra-
tion constants. The size of the User block can be read in the global structure member
SysIDBlock.userBlockSize. The functions readUserBlock() and writeUserBlock()
are used to access the User block. These function take an offset into the block as a parameter. The highest
offset available to the user in the User block will be

SysIDBlock.userBlockSize-1

if there are no calibration constants, or

DAC_CALIB_ADDR-1

if there are.

See the Rabbit designer’s handbook for more details about the User block.
 Hints and Tips rabbit.com 321

http://www.rabbit.com

19.3.2 WriteFlash2
See the Dynamic C Function Reference Manual for a complete description of WriteFlash2().

There is a function available for writing to the first flash, WriteFlash(), but its use is highly discour-
aged for reasons of forward source and binary compatibility should flash sector configuration change dras-
tically in a product. For more information on flash compatibility issues, see technical notes TN216 “Is
your Application Ready for Large Sector Flash?” and TN217 “Binary and Source Compatibility Issues for
4K Flash Sector Sizes” at Rabbit’s website: rabbit.com.

19.3.3 Battery-Backed RAM
Static variables and global variables will always be located at the same addresses between power cycles
and can only change locations via recompilation. The file system can be configured to use RAM also.
While there may be applications where storing persistent data in RAM is acceptable, for example a data
logger where the data gets retrieved and the battery checked periodically, keep in mind that a programming
error such as an uninitialized pointer could cause RAM data to be corrupted.

xalloc() will allocate blocks of RAM in extended memory. It will allocate the blocks consistently from
the same physical address if done at the beginning of the program and the program is not recompiled.

19.4 Root Memory Reduction Tips
Customers with programs that are near the limits of root code and/or root data space usage will be inter-
ested in these tips for saving root space. For more help, see Technical Note TN238 “Rabbit Memory Usage
Tips.” This document is available by choosing Online Documentation from the Help menu of Dynamic C
or at at: rabbit.com.

19.4.1 Increasing Root Code Space
Increasing the available amount of root code space may be done in the following ways:

• Enable Separate Instruction and Data Space

A hardware memory management scheme that uses address line inversion to double the
amount of logical address space in the base and data segments is enabled on the Compiler tab
of the Options | Project Options dialog. Enabling separate I&D space doubles the amount of root
cod and root data available for an application program.

• Use #memmap xmem

This will cause C functions that are not explicitly declared as “root” to be placed in xmem.
Note that the only reason to locate a C function in root is because it modifies the XPC register
(in embedded assembly code), or it is an ISR. The only performance difference in running code
in xmem is in getting there and returning. It takes a total of 12 additional machine cycles
because of the differences between call/lcall, and ret/lret.

• Increase ROOT_SIZE_4Ki

The macro ROOT_SIZE_4K determines the beginning logical address for the data segment.

i. The macro DATAORG was deprecated in favor of ROOT_SIZE_4K starting with Dynamic C 10.21.
ROOT_SIZE_4K equals DATAORG/0x1000.
 Hints and Tips rabbit.com 322

http://www.rabbit.com/support/techNotes_whitePapers.shtml
http://www.rabbit.com
http://www.rabbit.com/support/techNotes_whitePapers.shtml

Root code space can be increased by increasing ROOT_SIZE_4K in StdBIOS.c. The default is
0x3 when separate I&D space is on, and 0x6 otherwise. It can be as high as 0xB.

When separate I&D space is on, ROOT_SIZE_4K defines the boundary between root variable
data and root constant data. In this case, increasing ROOT_SIZE_4K increases root constant
space and decreases root variable space.

When separate I&D space is off, ROOT_SIZE_4K determiness the boundary between root vari-
able data and the combination of root code and root constant data. Note that root constants are
in the base segment with root code. In this case, increasing ROOT_SIZE_4K increases root
code and root constant space and decreases root data space.

• Compile out floating point support

Floating point support can be conditionally compiled out of stdio.lib by adding #define
STDIO_DISABLE_FLOATS to either a user program or the Defines tab page in the Project
Options dialog. This can save several thousand bytes of code space.

• Reduce usage of root constants and string literals

Shortening literal strings and reusing them will save root space. The compiler automatically
reuses identical string literals.

These two statements :

printf (“This is a literal string”);
sprintf (buf, “This is a literal string”);

will share the same literal string space whereas:

sprintf (buf, “this is a literal string”);

will use its own space since the string is different.

• Use the far keyword to directly declare variables in xmem

See Section 4.3 and Chapter 14 for more information on the far keyword.

• Turn off selected debugging features

Watch expressions, breakpoints, and single stepping can be selectively disabled on the Debug-
ger tab of Project Options to save some root code space.

• Place assembly language code into xmem

Pure assembly language code functions can go into xmem.

#asm
foo_root::
 [some instructions]
 ret
#endasm

The same function in xmem:
#asm xmem
foo_xmem::
 [some instructions]
 lret ; use lret instead of ret
#endasm
 Hints and Tips rabbit.com 323

http://www.rabbit.com

The correct calls are call foo_root and lcall foo_xmem. If the assembly function
modifies the XPC register with

LD XPC, A

it should not be placed in xmem. If it accesses data on the stack directly, the data will be one
byte away from where it would be with a root function because lcall pushes the value of
XPC onto the stack.

19.4.2 Increasing Root Data Space
Increasing the available amount of root data space may be done in the following ways:

• Enable Separate Instruction and Data Space

A hardware memory management scheme that uses address line inversion to double the
amount of logical address space in the base and data segments is enabled on the Compiler tab
of the Options | Project Options dialog. Enabling separate I&D space doubles the amount of root
code and root data available for an application program.

• Decrease ROOT_SIZE_4Ki

The macro ROOT_SIZE_4K determines the beginning logical address for the data segment.

Root data space can be increased by decreasing ROOT_SIZE_4K in StdBIOS.c. At the time of
this writing, RAM compiles should be done with no less than the default value (0x6) of
DATAORG when separate I&D space is off. This restriction is to ensure that the pilot BIOS does
not overwrite itself.

When separate I&D space is on, ROOT_SIZE_4K determines the boundary between root vari-
able data and root constant data. In this case, decreasing ROOT_SIZE_4K increases root vari-
able space and descreases root constant space.

When separate I&D space is off, ROOT_SIZE_4K determines the boundary between root vari-
able data and the combination of root code and root constant data. Note that root constants are
in the base segment with root code. In this case, decreasing ROOT_SIZE_4K increases root
data space and decreases root code space.

• Use xmem for large RAM buffers

xalloc() can be used to allocate chunks of RAM in extended memory (xmem) but its use is
no longer necessary for data objects which exist for the program’s lifetime. It is, however, pre-
served for backwards compatibility.

Using the far keyword is easier and more efficient than using xalloc(). Consider the follow-
ing code:
far char my_buffer[BUFFER_SIZE];

int main() {
far char *p;
p = my_buffer;
... // access xmem directly

}

Large buffers used by Dynamic C libraries are already allocated from RAM in xmem.

i. The macro DATAORG was deprecated in favor of ROOT_SIZE_4K starting with Dynamic C 10.21.
ROOT_SIZE_4K equals DATAORG/0x1000.
 Hints and Tips rabbit.com 324

http://www.rabbit.com

APPENDIX A. MACROS AND GLOBAL
VARIABLES

This appendix contains descriptions of macros and global variables available in Dynamic C. This is not an
exhaustive list.

A.1 Macros Defined by the Compiler
The macros in the following table are defined internally. Default values are given where applicable, as well
as directions for changing values.

Table 20-1. Macros Defined by the Compiler

Macro Name Definition and Default

BIOSBAUD
This is the debug baud rate. The baud rate can be changed in the
Communications tab of Project Options.

_BOARD_TYPE_

This is read from the System ID block or defaulted to 0x100 (the
BL1810 JackRabbit board) if no System ID block is present. This can be
used for conditional compilation based on board type. Board types are
listed in boardtypes.lib.

_CPU_ID_

This macro identifies the CPU type, including its revision; e.g.,
 #if _CPU_ID_ >= R4000_R0
identifies a Rabbit 4000 microprocessor.
Look in \Lib\..\BIOSLIB\sysiodefs.lib for the constants
and mask macros that are defined for use with _CPU_ID_.

CC_VER
Gives the Dynamic C version in hex, i.e., if Dynamic C version 10.40 is
being used, the value of CC_VER will be 0x0A40.

DC_CRC_PTR Reserved.

__DATE__

The compiler substitutes this macro with the date that the file was
compiled (either the BIOS or the .c file). The character string literal is of
the form Mmm dd yyyy. The text used for the months is as follows:
"Jan," "Feb," "Mar," "Apr," "May," "Jun," "Jul," "Aug," "Sep," "Oct,"
"Nov," "Dec." There is a space as the first character of dd if the value is
less than 10.

DEBUG_RST

Go to the Compiler tab of Project Options and click on the “Advanced”
button at the bottom of the dialog box. Check “Include RST 28
instructions” to set DEBUG_RST to 1. Debug code will be included
even if #nodebug precedes the main function in the program.
Dynamic C User’s Manual rabbit.com 325

http://www.rabbit.com

A.2 Macros Defined in the BIOS or Configuration Libraries
This is not a comprehensive list of configuration macros, but rather, a short list of those found to be com-
monly used by Dynamic C programmers. Most default conditions can be overridden by defining the macro
in the “Defines” tab of the “Project Options” dialog.

All the configuration macros listed here were defined in RabbitBIOS.c prior to Dynamic C 9.30. Since
then many of them have been moved to configuration libraries while RabbitBIOS.c has become a
wrapper file that permits a choice of which BIOS to compile. See Section 19.1 for more information on the
reorganization of the BIOS that occured with Dynamic C 9.30.

CLOCK_DOUBLED

Determines whether or not to use the clock doubler. The default condition is to use the clock doubler,
defined in \BIOSLIB\sysconfig.lib. Override the default condition by defining
CLOCK_DOUBLED to “0” in an application or in the project.

ROOT_SIZE_4K

Defines the beginning logical address for the data segment. Defaults are defined in the BIOS: 0x3 if sepa-
rate I&D space enabled, 0x6 otherwise. Users can override the defaults in the Defines tab of Project
Options dialog.

WATCHCODESIZE

Specifies the number of root RAM bytes for watch code. Defaults are defined in the BIOS: 0x200 bytes if
watch expressions are enabled, zero bytes otherwise. The defaults cannot be overridden by an application.

USE_TIMERA_PRESCALE

Uncomment this macro in \BIOSLIB\sysconfig.c to run the peripheral clock at the same frequency
as the CPU clock instead of the standard “CPU clock/2.”

__FILE__
The compiler substitutes this macro with the current source code file
name as a character string literal.

__LINE__
The compiler substitutes this macro with the current source code line
number as a decimal constant.

NO_BIOS

Boolean value. Tells the compiler whether or not to include the BIOS
when compiling to a .bin file. This is an advanced compiler option
accessible by clicking the “Advanced” button on the Compiler tab in
Project Options.

_TARGETLESS_COMPILE_
Boolean value. It defaults to 0. Set it by selecting “Compile defined
target configuration to .bin file” under “Default Compile Mode,” in the
Compiler tab of Project Options.

__TIME__
The compiler substitutes this macro with the time that the file (BIOS or
.c) was compiled. The character string literal is of the form hh:mm:ss.

Table 20-1. Macros Defined by the Compiler

Macro Name Definition and Default
 Macros and Global Variables rabbit.com 326

http://www.rabbit.com

A.3 Global Variables
These variables may be read by any Dynamic C application program.

dc_timestamp

This internally-defined long is the number of seconds that have passed since 00:00:00 January 1, 1980,
Greenwich Mean Time (GMT) adjusted by the current time zone and daylight savings of the PC on which
the program was compiled. The recorded time indicates when the program finished compiling. The follow-
ing program will use dc_timestamp to help calculate the date and time.

printf("The date and time: %lx\n", dc_timestamp);

main(){
struct tm t;
printf("dc_timestamp = %lx\n", dc_timestamp);
mktm(&t, dc_timestamp);

printf("%2d/%02d/%4d %02d:%02d:%02d\n",
t.tm_mon,t.tm_mday,t.tm_year + 1900, t.tm_hour,t.tm_min,

t.tm_sec);
}

OPMODE

This is a char. It can have the following values:

• 0x88 = debug mode

• 0x80 = run mode

SEC_TIMER

This unsigned long variable is initialized to the value of the real-time clock (RTC). If the RTC is set cor-
rectly, this is the number of seconds that have elapsed since the reference date of January 1, 1980. The
periodic interrupt updates SEC_TIMER every second. This variable is initialized by the Virtual Driver
when a program starts.

MS_TIMER

This unsigned long variable is initialized to zero. The periodic interrupt updates MS_TIMER every milli-
second. This variable is initialized by the Virtual Driver when a program starts.

TICK_TIMER

This unsigned long variable is initialized to zero. The periodic interrupt updates TICK_TIMER 1024
times per second. This variable is initialized by the Virtual Driver when a program starts.
 Macros and Global Variables rabbit.com 327

http://www.rabbit.com

A.4 Exception Types
These macros are defined in errors.lib:

A.5 Rabbit Registers
Macros are defined for all of the Rabbit registers that are accessible for application programming. A list of
these register macros can be found in the user’s manuals for the Rabbit microprocessor, as well as in the
Rabbit Registers file accessible from the Dynamic C Help menu.

A.5.1 Shadow Registers
Shadow registers exist for many of the I/O registers. They are character variables defined in the BIOS. The
naming convention for shadow registers is to append the word Shadow to the name of the register. For
example, the global control status register, GCSR, has a corresponding shadow register named
GCSRShadow.

The purpose of the shadow registers is to allow the program to reference the last value programmed to the
actual register. This is needed because a number of the registers are write only.

#define ERR_BADPOINTER
#define ERR_BADARRAYINDEX
#define ERR_DOMAIN
#define ERR_RANGE
#define ERR_FLOATOVERFLOW
#define ERR_LONGDIVBYZERO
#define ERR_LONGZEROMODULUS
#define ERR_BADPARAMETER
#define ERR_INTDIVBYZERO
#define ERR_UNEXPECTEDINTRPT
#define ERR_CORRUPTEDCODATA
#define ERR_VIRTWDOGTIMEOUT
#define ERR_BADXALLOC
#define ERR_BADSTACKALLOC
#define ERR_BADSTACKDEALLOC
#define ERR_BADXALLOCINIT
#define ERR_NOVIRTWDOGAVAIL
#define ERR_INVALIDMACADDR
#define ERR_INVALIDCOFUNC

228
229
234
235
236
237
238
239
240
241
243
244
245
246
247
249
250
251
252
 Macros and Global Variables rabbit.com 328

http://www.rabbit.com

Dynamic C User’s Manual rabbit.com 329

APPENDIX B. MAP FILE GENERATION

All symbol information is put into a single file. The map file has three sections: a memory map section, a
function section, and a globals section.

The map file format is designed to be easy to read, but with parsing in mind for use in program down-load-
ers and in other possible future utilities (for example, an independent debugger). Also, the memory map, as
defined by the #org statements, will be saved into the map file.

Map files are generated in the same directory as the file that is compiled. If compilation is not successful,
the contents of the map file are not reliable.

21.1 Grammar
<mapfile>: <memmap section> <function section> <global section>

<memmap section>: <memmapreg>+

<memmapreg>: <register var> = <8-bit const>

<register var>: XPC|SEGSIZE|DATASEG

<function section>: <function descripton>+

<function description>: <identifier> <address> <size>

<address>: <logical address> | <physical address>

<logical address>: <16-bit constant>

<physical address: <8-bit constant>:<16-bit constant>

<size>: <20-bit constant>

<global section>: <global description>+

<global description>: <scoped name> <address>

<scoped name>: <global>| <local static>

<global>: <identifier>

<local static>: <identifier>:<identifier>

Comments are C++ style (// only).

http://www.rabbit.com

APPENDIX C. SECURITY SOFTWARE &
UTILITY PROGRAMS

This appendix documents several useful and easy to use utility programs available from Rabbit.

This appendix documents the security software and utility programs available for Rabbit-based systems.

22.1 Dynamic C Utilities
There are several utilities bundled with Dynamic C.

V.1.1 Rabbit I/O LIB Utility
This utility is provided for configuring a Rabbit 4000 or 5000 board. All register bit assignments for the
Rabbit 4000 and many register bit assignments for the Rabbit 5000 are transformed from cryptic hex num-
bers into an easy-to-use GUI. You can also open a window that lets you view the corresponding register
values as you make changes via the GUI.

Double-click on /Utilities/IOConfig.exe to run the utility.

When a configuration is saved, the utility will generate a library that contains a function that will execute
the necessary statements to produce the selected configuration. The name of the function and the name and
path of the library are chosen by the user in the “Save Configuration” dialog. If the library is saved where
your “lib.dir” file can find it, then the newly created function and library can be found with Ctrl+H when
running Dynamic C. The utility-generated function and library are used in application code as follows:

#use mylib.lib
main(){

BoardInit();
...

}

The Rabbit I/O LIB Utility allows you to configure the following Rabbit features:

• Parallel Ports - includes configuring slave port and auxiliary I/O bus use, pin data direction and alter-
nate functions.

• Serial Ports - includes configuring transfer mode, hardware pin assignment for Tx and Rx, baud rate
and other serial port parameters.

• PWM - includes configuring the interrupt priority, period, duty cycle, spread function and prescaler for
each PWM channel. You can also select parallel port pins for the PWM output.

• Timers - includes configuration of timers A, B and C. Includes configuring interrupt priority.

• External Interrupts - includes configuring priority level and whether interrupts occur on the rising edge,
falling edge or both.
Dynamic C User’s Manual rabbit.com 330

http://www.rabbit.com

• Input Capture - includes configuring priority levels, choosing between normal and counter operation,
determining trigger latch, trigger condition pin and start/stop conditions.

• External I/O - includes configuring wait states, signal polarity, selecting type of strobe signals, transac-
tion timing and whether or not to enable handshaking.

• DMA - includes configuring parallel port pin assignments for triggering external DMA requests and
transfer mode.

• Quadrature Decoder - includes configuring interrupt priority level, counter width (8 or 10 bits), assign-
ing parallel port pins for quadrature decoder inputs and determining PCLK prescaler and timer A10
divisor.

• Slave Port - includes configuring interrupt priority level, enabling/disabling the slave port and the exter-
nal I/O bus.

V.1.2 Library File Encryption
The Library File Encryption Utility, Encrypt.exe, allows distribution of sensitive runtime library files.

The encrypted library files compile normally, but cannot be read with an editor. The files will be automati-
cally decrypted during Dynamic C compilation, but users of Dynamic C will not be able to see any of the
decrypted contents except for function descriptions for which a public interface is given. An optional user-
defined copyright notice is put at the beginning of an encrypted file.

To use this utility, double-click on the program name, Encrypt.exe. The following window will
appear:

Complete instructions are available by clicking on the Help button in the upper righthand corner of the
program window. Context-sensitive help is accessed by positioning the cursor over the desired subject and
then pressing <F1>.
 Security Software & Utility Programs rabbit.com 331

http://www.rabbit.com

V.1.2.1 Add Files to Encrypt
There are two ways to select files to encrypt.

1. Type the path and filename in the lower window.

2. Click the Add Files to Encrypt button to bring up a file open dialog box and browse for the desired
file.

The list of files to be encrypted may be edited if desired. Notice that if anything is entered in the lower
window, a new button named “Encrypt” appears. Two entries in the window change it to “Encrypt All”.
Clicking this button causes the utility to encrypt the file(s) listed in the lower window.

V.1.2.2 File Extension
Encrypted files will be saved with the same pathname but with the extension supplied. Dynamic C will use
encrypted and non-encrypted files seamlessly, so the choice of extension is for one’s own file manage-
ment.

V.1.2.3 Optional Text Area
The upper window is a text window of up to 4k bytes in length. Any text entered will appear in all files in
the list appearing in the lower window. If two files are to be given unique headers, they should be
encrypted separately.

This area can be used for copyright information, instructions, disclaimers, warnings, or anything else rele-
vant to viewers of the file.

V.1.3 File Compression Utility
Dynamic C has a compression utility feature. The default utility implements an LZSS style compression
algorithm. Support libraries to decompress files achieve a throughput of 10 KB/s to 20 KB/s (number of
bytes in uncompressed file/time to decompress entire file using ReadCompressedFile()) depending
upon file size and compression ratio.

The #zimport() compiler directive performs a standard #ximport, but compresses the file by invoking
the compression utility before emitting the file to the target. Support libraries allow the compressed file to
be decompressed on-the-fly. Compression ratios of 50% or more for text files can be achieved, thus freeing
up valuable xmem space. The compression library is thread safe.

For details on compression ratios, memory usage and performance, please see Technical Note 234, “File
Compression (Using #zimport)” available on our website, at www.rabbit.com.

V.1.3.1 Using the File Compression Utility
The utility is invoked by Dynamic C during compile time when #zimport is used. The keyword
#zimport will compress any file. Of course some files are already in a compressed format, for example
jpeg files, so trying to compress them further is not useful and may even cause the resulting compressed
file to be larger than the original file. (The original file is not modified by the compression utility nor by
the support libraries.) The compression of FS2 files is a special case. Instead of using #zimport,
#ximport is used along with the function CompressFile().

Compressed files are decompressed on-the-fly using ReadCompressedFile(). Compressed FS2 files
may also be decompressed on-the-fly by using ReadCompressedFile(). In addition, an FS2 file may
be decompressed into a new FS2 file by using DecompressFile().
 Security Software & Utility Programs rabbit.com 332

http://www.rabbit.com/support/techNotes_whitePapers.shtml
http://www.rabbit.com

There are 3 sample programs to illustrate the use of file compression

• Samples/zimport/zimport.c: demonstrates #zimport

• Samples/zimport/zimport_fs2.c: demonstrates file compression in combination with the
file system

• Samples/tcpip/http/zimport.c: demonstrates file compression support using the http server

V.1.3.2 File Compression/Decompression API
The file compression API consists of 7 functions, 3 of which are of prime importance:

OpenInputCompressedFile() - open a compressed file for reading or open an uncompressed
#ximport file for compression.
CloseInputCompressedFile() - close input file and deallocate memory buffers.
ReadCompressedFile() - perform on-the-fly decompression.

The remaining 4 functions are included for compression support for FS2 files:

OpenOutputCompressedFile() - open FS2 file for use with CompressFile().
CloseOutputCompressedFile() - close file and deallocate memory buffers.
CompressFile() - compress an FS2 file, placing the result in a second FS2 file.
DecompressFile() - decompress an FS2 file, placing the result in a second FS2 file.

Complete descriptions are available for these functions in the Dynamic C Function Reference Manual and
also via the Function Lookup facility (Ctrl+H or Help menu).

There are several macros associated with the file compression utility:

• ZIMPORT_MASK - Used to determine if the imported file is compressed (#zimport) or not
(#ximport).

• OUTPUT_COMPRESSION_BUFFERS (default = 0) - Number of 24K buffers for compression (com-
pression also requires a 4K input buffer, which is allocated automatically for each output buffer that is
defined).

• INPUT_COMPRESSION_BUFFERS (default = 1) Number of 4KB internal buffers (in RAM) used for
decompression.

Each compressed file has an associated file descriptor of type ZFILE. All fields in this structure are used
internally and must not be changed by an application program.

V.1.3.3 Replacing the File Compression Utility
Users can use their own compression utility, replacing the one provided. If the provided compression util-
ity is replaced, the following support libraries will also need to be replaced: zimport.lib, lzss.lib
and bitio.lib. They are located in lib\..\zimport\. The default compression utility,
Zcompress.exe, is located in Dynamic C’s root directory. The utility name is defined by a key in the
current project file:

[Compression Utility]

Zimport External Utility=Zcompress.exe

To replace Zcompress.exe as the utility used by Dynamic C for compression, open your project file
and edit the filename.
 Security Software & Utility Programs rabbit.com 333

http://www.rabbit.com

The compression utility must reside in the same directory as the Dynamic C compiler executable. Dynamic
C expects the program to behave as follows:

• Take as input a file name relative to the Dynamic C installation directory or a fully qualified path.

• Produce an output file of the same name as the input file with the extension .DCZ at the end. E.g.,
test.txt becomes test.txt.dcz.

• Exit with zero on success, non-zero on failure.

If the utility does not meet these criteria, or does not exist, a compile-time error will be generated.

V.1.4 Font and Bitmap Converter Utility
The Font and Bitmap Converter converts Windows fonts and monochrome bitmaps to a library file format
compatible with Rabbit’s Dynamic C applications and graphical displays. Non-Roman characters may also
be converted by applying the monochrome bitmap converter to their bitmaps.

Double-click on the fmbcnvtr.exe file in the Utilities folder where you installed Dynamic C. Select
and convert existing fonts or bitmaps. Complete instructions are available by clicking on the Help button
within the utility.

When complete, the converted file is displayed in the editing window. Editing may be done, but probably
won’t be necessary. Save the file as name_me.lib: the name of your choice.

Add the file to applications with the statement:

#use name_me.lib // remember to add this filename to “lib.dir” file

or by cut and pasting from name_me.lib directly into the application file.

V.1.5 Rabbit Field Utility Module
The Rabbit Field Utility (RFU) will load a binary file created with Dynamic C to a Rabbit-based board.
The RFU can be used to load a binary file without Dynamic C present on the host computer, and without
recompiling the program each time it is loaded to a controller.

The Dynamic C installation created a desktop icon
for the RFU. The executable file, rfu.exe, can
be found in the subdirectory named “Utilities”
where Dynamic C was installed. Complete instruc-
tions are available by clicking on the Help button
within the utility. The Help document details setup
information, the file menu options and BIOS
requirements.

The RFU executable that comes with the Dynamic
C distribution is branded as a product, as seen in the
“About” screenshot shown here. You can brand the RFU or customize its functionality to suit your needs.
Please contact technical support for the source file needed for customization:

www.rabbit.com/support/questionSubmit.shtml

The RFU enables those without Dynamic C to update their Rabbit-based board with a few files installed on
the computer and the appropriate connection to the target board.
 Security Software & Utility Programs rabbit.com 334

http://www.rabbit.com/support/questionSubmit.shtml
http://www.rabbit.com

The necessary files are included with
Dynamic C. They are: the executable
(Rfu.exe), the cold loader, the pilot
BIOS, and a couple of files used to
determine information about the mem-
ory device being used.

The default files used for the cold
loader, etc., can be seen by selecting
“File Locations...” from the Setup
menu. We strongly recommend that
the default files be used. They are
needed internally by the RFU and
improper operation of the utility will
result if a replacement file does not
contain the expected code or informa-
tion.

Rfu.exe and its ancillary files are
freely distributable.

The RFU communicates with the tar-
get using a serial connection. This
connection requires a programming
cable.

V.1.5.1 Command Line RFU
There is also a command line version of the RFU. On the command line specify:

clRFU SourceFilePathName [options]

where SourceFilePathName is the path name of the .bin file to load to the connected target. The
options are as follows:

-s port:baudrate

--v

Description: Select the comm port and baud rate for the serial connection.

Default: COM1 and 115,200 bps

RFU GUI Equivalent: From the Setup | Communications dialog box, choose values from the
Baud Rate and Comm Port drop-down menus.

Example: clRFU myProgram.bin -s 2:115200

Description: Causes the RFU version number and additional status information to
be displayed.

Default: Only error messages are displayed.

RFU GUI Equivalent: Status information is displayed by default and there is no option to turn
it off.

Example: clRFU myProgram.bin -v
 Security Software & Utility Programs rabbit.com 335

http://www.rabbit.com

-cl ColdLoaderPathName

 -pb PilotBiosPathName

 -fi Flash.ini PathName

 -vp+

Description: Select a new initial loader.

Default: \bios\coldload.bin

RFU GUI Equivalent: From the “Choose File Locations...” dialog box, visible by selecting
the menu option Setup | File Locations,, type in a pathname or click on
the ellipses radio button to browse for a file.

Example: clRFU myProgram.bin -cl myInitialLoader.c

Description: Select a new secondary loader.

Default: \bios\pilot.bin

RFU GUI Equivalent: From the “Choose File Locations...” dialog box, visible by selecting
the menu option Setup | File Locations, type in a pathname or click on
the ellipses radio button to browse for a file.

Example: clRFU myProgram.bin -pb mySecondaryLoader.c

Description: Select a new file that Dynamic C will use to externally define flash.

Default: flash.ini

RFU GUI Equivalent: From the “Choose File Locations...” dialog box, visible by selecting
the menu option Setup | File Locations, type in a pathname or click on
the ellipses radio button to browse for a file.

Example: clRFU myProgram.bin -fi myflash.ini

Description: Verify the presence of the processor by using the DSR line of the PC
serial connection.

Default: The processor is verified.

RFU GUI Equivalent: From the “Communications Options” dialog box, visible by selecting
Setup | Communications, check the “Enable Processor Detection”
option.

Example: clRFU myProgram.bin -vp+
 Security Software & Utility Programs rabbit.com 336

http://www.rabbit.com

 -vp-

 -usb+

 -usb-

Description: Do not verify the presence of the processor.

Default: The processor is verified.

RFU GUI Equivalent: From the “Communications Options” dialog box, visible by selecting
Setup | Communications, uncheck the “Enable Processor Detection”
option.

Example: clRFU myProgram.bin -vp-

Description: Enable use of USB to serial converter.

Default: The use of the USB to serial converter is disabled.

RFU GUI Equivalent: From the “Communications Options” dialog box, visible by selecting
Setup | Communications, check the “Use USB to Serial Converter”
option.

Example: clRFU myProgram.bin -usb+

Description: Disable use of USB to serial converter.

Default: The use of the USB to serial converter is disabled.

RFU GUI Equivalent: From the “Communications Options” dialog box, visible by selecting
Setup | Communications, uncheck the “Use USB to Servile Converter”
option.

Example: clRFU myProgram.bin -usb-
 Security Software & Utility Programs rabbit.com 337

http://www.rabbit.com

Software License Agreement

RABBIT® SOFTWARE END USER LICENSE
AGREEMENT

IMPORTANT-READ CAREFULLY: BY INSTALLING, COPYING OR OTHERWISE USING THE
ENCLOSED RABBIT DYNAMIC C SOFTWARE, WHICH INCLUDES COMPUTER SOFTWARE
("SOFTWARE") AND MAY INCLUDE ASSOCIATED MEDIA, PRINTED MATERIALS, AND
"ONLINE" OR ELECTRONIC DOCUMENTATION ("DOCUMENTATION"), YOU (ON BEHALF OF
YOURSELF OR AS AN AUTHORIZED REPRESENTATIVE ON BEHALF OF AN ENTITY) AGREE
TO ALL THE TERMS OF THIS END USER LICENSE AGREEMENT ("LICENSE") REGARDING
YOUR USE OF THE SOFTWARE. IF YOU DO NOT AGREE WITH ALL OF THE TERMS OF THIS
LICENSE, DO NOT INSTALL, COPY OR OTHERWISE USE THE SOFTWARE AND IMMEDI-
ATELY CONTACT RABBIT FOR RETURN OF THE SOFTWARE AND A REFUND OF THE PUR-
CHASE PRICE FOR THE SOFTWARE.

We are sorry about the formality of the language below, which our lawyers tell us we need to include to
protect our legal rights. If You have any questions, write or call Rabbit at (530) 757-4616, 2900 Spafford
Street, Davis, California 95616.

1. Definitions. In addition to the definitions stated in the first paragraph of this document, capitalized
words used in this License shall have the following meanings:

1.1 "Qualified Applications" means an application program developed using the Software and that
links with the development libraries of the Software.

1.1.1 "Qualified Applications" is amended to include application programs developed using the Soft-
ools WinIDE program for Rabbit processors available from Softools, Inc.

1.1.2 The MicroC/OS-II (µC/OS-II) library and sample code and the Point-to-Point Protocol (PPP)
library are not included in this amendment.

1.1.3 Excluding the exceptions in 1.1.2, library and sample code provided with the Software may be
modified for use with the Softools WinIDE program in Qualified Systems as defined in 1.2. All
other Restrictions specified by this license agreement remain in force.

1.2 "Qualified Systems" means a microprocessor-based computer system which is either (i) manufac-
tured by, for or under license from Rabbit, or (ii) based on the Rabbit 2000 microprocessor, the
Rabbit 3000 microprocessor, the Rabbit 4000 microprocessor, or any other Rabbit microproces-
sor. Qualified Systems may not be (a) designed or intended to be re-programmable by your cus-
tomer using the Software, or (b) competitive with Rabbit products, except as otherwise stated in a
written agreement between Rabbit and the system manufacturer. Such written agreement may
require an end user to pay run time royalties to Rabbit.

2. License. Rabbit grants to You a nonexclusive, nontransferable license to (i) use and reproduce the
Software, solely for internal purposes and only for the number of users for which You have pur-
chased licenses for (the "Users") and not for redistribution or resale; (ii) use and reproduce the Soft-
ware solely to develop the Qualified Applications; and (iii) use, reproduce and distribute, the
Dynamic C User’s Manual rabbit.com 338

http://www.rabbit.com

Qualified Applications, in object code only, to end users solely for use on Qualified Systems; pro-
vided, however, any agreement entered into between You and such end users with respect to a Qual-
ified Application is no less protective of Rabbit’s intellectual property rights than the terms and
conditions of this License. (iv) use and distribute with Qualified Applications and Qualified Systems
the program files distributed with Dynamic C named RFU.EXE, PILOT.BIN, and COLD-
LOAD.BIN in their unaltered forms.

3. Restrictions. Except as otherwise stated, You may not, nor permit anyone else to, decompile,
reverse engineer, disassemble or otherwise attempt to reconstruct or discover the source code of the
Software, alter, merge, modify, translate, adapt in any way, prepare any derivative work based upon
the Software, rent, lease network, loan, distribute or otherwise transfer the Software or any copy
thereof. You shall not make copies of the copyrighted Software and/or documentation without the
prior written permission of Rabbit; provided that, You may make one (1) hard copy of such docu-
mentation for each User and a reasonable number of back-up copies for Your own archival pur-
poses. You may not use copies of the Software as part of a benchmark or comparison test against
other similar products in order to produce results strictly for purposes of comparison. The Software
contains copyrighted material, trade secrets and other proprietary material of Rabbit and/or its licen-
sors and You must reproduce, on each copy of the Software, all copyright notices and any other pro-
prietary legends that appear on or in the original copy of the Software. Except for the limited license
granted above, Rabbit retains all right, title and interest in and to all intellectual property rights
embodied in the Software, including but not limited to, patents, copyrights and trade secrets.

4. Export Law Assurances. You agree and certify that neither the Software nor any other technical
data received from Rabbit, nor the direct product thereof, will be exported outside the United States
or re-exported except as authorized and as permitted by the laws and regulations of the United States
and/or the laws and regulations of the jurisdiction, (if other than the United States) in which You
rightfully obtained the Software. The Software may not be exported to any of the following coun-
tries: Cuba, Iran, Iraq, Libya, North Korea, Sudan, or Syria.

5. Government End Users. If You are acquiring the Software on behalf of any unit or agency of the
United States Government, the following provisions apply. The Government agrees: (i) if the Soft-
ware is supplied to the Department of Defense ("DOD"), the Software is classified as "Commercial
Computer Software" and the Government is acquiring only "restricted rights" in the Software and its
documentation as that term is defined in Clause 252.227-7013(c)(1) of the DFARS; and (ii) if the
Software is supplied to any unit or agency of the United States Government other than DOD, the
Government's rights in the Software and its documentation will be as defined in Clause 52.227-
19(c)(2) of the FAR or, in the case of NASA, in Clause 18-52.227-86(d) of the NASA Supplement
to the FAR.

6. Disclaimer of Warranty. You expressly acknowledge and agree that the use of the Software and its
documentation is at Your sole risk. THE SOFTWARE, DOCUMENTATION, AND TECHNICAL
SUPPORT ARE PROVIDED ON AN "AS IS" BASIS AND WITHOUT WARRANTY OF ANY
KIND. Information regarding any third party services included in this package is provided as a con-
venience only, without any warranty by Rabbit, and will be governed solely by the terms agreed
upon between You and the third party providing such services. RABBIT AND ITS LICENSORS
EXPRESSLY DISCLAIM ALL WARRANTIES, EXPRESS, IMPLIED, STATUTORY OR OTH-
ERWISE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF
THIRD PARTY RIGHTS. RABBIT DOES NOT WARRANT THAT THE FUNCTIONS CON-
TAINED IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS, OR THAT THE OPERA-
TION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT
DEFECTS IN THE SOFTWARE WILL BE CORRECTED. FURTHERMORE, RABBIT DOES
NOT WARRANT OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE
 rabbit.com 339

http://www.rabbit.com

RESULTS OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELI-
ABILITY OR OTHERWISE. NO ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN
BY RABBIT OR ITS AUTHORIZED REPRESENTATIVES SHALL CREATE A WARRANTY
OR IN ANY WAY INCREASE THE SCOPE OF THIS WARRANTY. SOME JURISDICTIONS
DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLU-
SION MAY NOT APPLY TO YOU.

7. Limitation of Liability. YOU AGREE THAT UNDER NO CIRCUMSTANCES, INCLUDING
NEGLIGENCE, SHALL RABBIT BE LIABLE FOR ANY INCIDENTAL, SPECIAL OR CONSE-
QUENTIAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION AND THE LIKE) ARIS-
ING OUT OF THE USE AND/OR INABILITY TO USE THE SOFTWARE, EVEN IF RABBIT
OR ITS AUTHORIZED REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. SOME JURISDICTIONS DO NOT ALLOW THE LIMITATION OR
EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES SO THE
ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU. IN NO EVENT SHALL
RABBIT’S TOTAL LIABILITY TO YOU FOR ALL DAMAGES, LOSSES, AND CAUSES OF
ACTION (WHETHER IN CONTRACT, TORT, INCLUDING NEGLIGENCE, OR OTHERWISE)
EXCEED THE AMOUNT PAID BY YOU FOR THE SOFTWARE.

8. Termination. This License is effective for the duration of the copyright in the Software unless ter-
minated. You may terminate this License at any time by destroying all copies of the Software and its
documentation. This License will terminate immediately without notice from Rabbit if You fail to
comply with any provision of this License. Upon termination, You must destroy all copies of the
Software and its documentation. Except for Section 2 ("License"), all Sections of this Agreement
shall survive any expiration or termination of this License.

9. General Provisions. No delay or failure to take action under this License will constitute a waiver
unless expressly waived in writing, signed by a duly authorized representative of Rabbit, and no sin-
gle waiver will constitute a continuing or subsequent waiver. This License may not be assigned, sub-
licensed or otherwise transferred by You, by operation of law or otherwise, without Rabbit's prior
written consent. This License shall be governed by and construed in accordance with the laws of the
United States and the State of California, exclusive of the conflicts of laws principles. The United
Nations Convention on Contracts for the International Sale of Goods shall not apply to this License.
If for any reason a court of competent jurisdiction finds any provision of this License, or portion
thereof, to be unenforceable, that provision of the License shall be enforced to the maximum extent
permissible so as to affect the intent of the parties, and the remainder of this License shall continue
in full force and effect. This License constitutes the entire agreement between the parties with
respect to the use of the Software and its documentation, and supersedes all prior or contemporane-
ous understandings or agreements, written or oral, regarding such subject matter. There shall be no
contract for purchase or sale of the Software except upon the terms and conditions specified herein.
Any additional or different terms or conditions proposed by You or contained in any purchase order
are hereby rejected and shall be of no force and effect unless expressly agreed to in writing by Rab-
bit. No amendment to or modification of this License will be binding unless in writing and signed by
a duly authorized representative of Rabbit.

Digi International Inc. © 2008 • All rights reserved.
 rabbit.com 340

http://www.rabbit.com

Index

Symbols

_GLOBAL_INIT207
“Defines Tab” on page 273127
@LENGTH ...174
@PC ..174
@RETVAL174, 183
@SP174, 177, 180, 182, 183, 188
. ...27
\\ ..151
\n ...141
\r ..141
#asm ..168, 216, 320
#debug203, 217, 320
#define ..217
#elif ...219
#else ..219
#endasm168, 173, 217
#endif ..219
#error ...217
#fatal ...218
#funcchain ...24, 218
#if ..219
#ifdef ...219
#ifndef ...220
#include ...220

absence of ...26
#interleave ...220
#makechain24, 221
#memmap221, 322
#nodebug203, 217, 320
#nointerleave ...220
#nouseix ..223
#use ...26, 28, 222
#useix ..223
#warns ...223
#warnt ...223
#ximport ..224
#zimport ..224

A

abandon ...189
abort ..189
about Dynamic C299
adc (add-with-carry)168
add-on modules330
address ..79

address space 10, 129
Advanced button 280
align .. 189
ALT key

See keystrokes
always_on ... 190
anymem .. 190
application program 26
argument passing 177, 183, 184
arrange icons ... 290
arrow keys 240, 241
asm .. 190
assembly 9, 168–188, 250

blocks in xmem 176
embedding C statements 169
stand-alone .. 175
window 179, 293

assignment operators 229
associativity 225, 226
auto ... 174, 175, 191

storage of variables 177

B

backslash (\)
continuation in directives 216

baud rate ... 103, 274
BCDE 175, 183, 184
BeginHeader 28, 29, 30
binary operators 225
BIOS

_xexit .. 123
calling premain() 92
command line compiler 301, 308
compilation environments 316
compile option 326
configuration macros 127
macro definitions 284
memory location 130
memory settings 281
user-defined 280, 319
variable defined in 197

blocking .. 135
board information 248, 285–??
BPB .. 163
break ... 192, 210
breakpoints

assembly window 179
Dynamic C User’s Manual rabbit.com 341

http://www.rabbit.com

enable ... 282
hard ... 251
hardware 74, 251
interrupt status 250, 251
library code ... 250
library files ... 195
norst keyword 204
persistent .. 250
RST 28 ... 320
single stepping 250
soft .. 250
Watches window 254

C

C language 9, 10, 24, 171, 175
calling assembly 182
embedded in assembly 169

cached write ... 142
call sequence .. 295
cascaded windows 290
case ... 192, 196
char ... 193, 213
clipboard .. 245
closing a file ... 243
CoData Structure 39

pointer to .. 41
cofunc ... 193
cofunctions ... 42–48

abandon .. 47
calling restrictions 43
everytime .. 47
firsttime .. 200
indexed ... 45
keyword .. 193
single user ... 45
suspend ... 212
syntax ... 43

cold loader .. 249
column resizing 294
command line interface 300–315
compile

BIOS ... 249
command line 300–313
errors .. 247
menu ... 248
options .. 276
RAM ... 324
speed ... 9
status ... 295
to .bin file ... 249
to file .. 240
to flash .. 248
to target 240, 248

compiler directives 216

#asm 168, 216, 320
options 216

#class .. 216
options 216

#debug 203, 217, 320
#define .. 217
#elif ... 219
#else .. 219
#endasm 168, 173, 217
#endif .. 219
#error .. 217
#fatal ... 218
#funcchain 24, 218
#GLOBAL_INIT 218
#if ... 219
#ifdef .. 219
#ifndef .. 220
#include .. 220
#interleave .. 220
#makechain 24, 221
#memmap ... 221

options 221
#nodebug 203, 217, 320
#nointerleave 220
#nouseix ... 223
#pragma .. 221
#precompile .. 222
#undef ... 222
#use ... 26, 28, 222
#useix ... 223
#warns .. 223
#warnt ... 223
#ximport ... 224
#zimport ... 224
line continuation 216

compression .. 332
const 171, 194, 216
continue .. 195, 210
copying text .. 245
costate ... 195
costatements 35–42

abort .. 189
firsttime .. 200
keyword .. 195
suspend ... 212
syntax ... 36
yield .. 215

cursor
execution 250, 251, 252
positioning 241, 247

cutting text .. 245

D

data structure
Index rabbit.com 342

http://www.rabbit.com

offset of element 174
returned by function 183

DATAORG 322, 324
DATASEG ... 129
date and time .. 93
db .. 171
debug .. 320

dialog box ... 282
differences highlighting 255
disassemble at address 254
disassembled code 254
hints and tips 69–91
keyword .. 195
memory dump 255
polling the target 250
step over ... 250
switching modes 247
trace into ... 250
update watch expressions 254
watchdog timers 95
windows 266–272, 292–295

declarations .. 28
default .. 196
Default Compile Mode 279
delay loop ... 94
delimiter matching 241
demotion .. 277, 278
differences highlighting 255
disassemble

at address 254, 293
at cursor 254, 293

DLM and FAT 150
DMA .. 132–134
download manager 150
downloading ... 9
DSR check ... 275
dump window ... 256
dw ... 172
Dynamic C

differences 10, 24
exit .. 244
support files .. 32

Dynamic C modules 330
dynamic memory allocation 132
dynamic storage allocation 19

E

Edit menu ... 245
edit mode .. 247
editor .. 9
else ... 196
embedded assembly 9, 176, 183
End key .. 240
EndHeader 28, 29, 30

enum ... 197
EPROM .. 10
equ .. 173
errors

error code ranges 123
locating ... 247
run-time .. 276

ESC key
to close menu 242

examples
delay loop ... 94
modules .. 30
timing loop ... 93

exit Dynamic C 244
extended memory 10, 182, 214

asm blocks .. 176
extern .. 30, 197

F

far pointers and data 20–22, 197
FAT

attributes of a file 144
blocking a non-blocking function 146
BPB .. 163
carriage return 141
clusters and sectors 161
configuration library 138
costatements 146–148
creating a file 141
custom device driver 138
device ... 135
directory ... 135
download manager (DLM) 150
error codes .. 136
escape character 151
fat_AutoMount 139
fat_config.lib 138
fat_Init .. 139
fat_part_mounted 139
flash types supported 136
hot-swapping 165, 166
initialization .. 139
line feed .. 141
max number of characters read 142
MBR ... 161
non-blocking 145
num_fat_devices 139
opening a file 141
partition .. 135
partition structure 139
partitioning 149–151
path separator 151
prealloc ... 138
reading a file 142
Index rabbit.com 343

http://www.rabbit.com

removable device advice 142
reserving file space 138
SD card ... 166
SF1000 ... 165
shell program 143
state of file .. 146
subdirectory .. 135
unsupported features 166
write-back cache 142
writing a file 141
xD card ... 165
µC/OS-II compatibility 165

fat_part_mounted 155
FAT_USE_FORWARDSLASH 151
file

attributes ... 144
commands .. 243
compression .. 332
create .. 141
extensions ... 249
generated .. 249
open .. 141, 151
print .. 244
read ... 142, 152
seek ... 153
state .. 146
write .. 141, 152

files
additional source 26

Find Next <F3> 246
firsttime .. 200
flags register ... 295
flash

xmem access 129
float .. 200, 213
for loop ... 201
frame

reference point 183
reference pointer 180, 182, 204, 320

function
auto variables 191
calls .. 177, 183
calls from assembly 184
chains .. 24, 207
create chains 221
entry and exit 320
headers .. 32
help ... 32
indirect call ... 22
prototypes ... 28
returns ... 183, 184
saving registers 188
stack space .. 320
unbalanced stack 188

function lookup <CTRL-H> 297
function prefix

anymem .. 190
debug .. 195
firsttime .. 200
interrupt .. 202
nodebug .. 203
norst .. 204
nouseix ... 204
root ... 206
size .. 208
speed ... 208
useix ... 211
xmem .. 214

Functions .. 99

G

Global Initialization 25
global variables .. 19
goto ... 201, 247
grep ... 247

H

hard breakpoints 251
header

function ... 32
module 28, 29, 30

Help menu .. 297
HL 175, 180, 183, 184
Home key ... 240
horizontal tiling 290
hot-swapping 165, 166

I

icons
arranged .. 290

IEEE floating point 200
if ... 196
information window 290, 295
init_on .. 202
inline code .. 279
insertion point 245, 247
Inspect menu 253, 292
Instruction Set Reference 299
int .. 202, 213
interrupts .. 184

breakpoints ... 250
keyword for ISR 202
latency .. 184
unpreserved registers 188
vectors .. 185

ISR .. 184, 322
IX (index register) 44, 180, 182, 204, 211
Index rabbit.com 344

http://www.rabbit.com

K

key .. 28
keystrokes

<ALT-Backspace>
undoing changes 245

<ALT-C>
select Compile menu 248

<ALT-F10>
Disassemble at Address 254

<ALT-F2>
Toggle Hard Breakpoint 251

<ALT-F4>
quitting Dynamic C 244

<ALT-F9>
Run w/ No Polling 250

<ALT-H>
select Help menu 297

<ALT-O>
select Options menu 257

<ALT-SHIFT-backspace>
redoing changes 245

<ALT-W>
select Window menu 290

<CTRL-F10>
Disassemble at Cursor 254

<CTRL-F2>
Reset Program 252

<CTRL-G>
Goto ... 247

<CTRL-H>
Library Help lookup 297

<CTRL-N>
next error 247

<CTRL-O>
Poll Target 252

<CTRL-P>
previous error 247

<CTRL-U>
Update Watch window 254

<CTRL-V>
pasting text 245

<CTRL-W>
Add/Del Items 254

<CTRL-X>
cutting text 245

<CTRL-Y>
Reset Target/Compile BIOS 249

<CTRL-Z>
Stop .. 250

<F10>
Assembly window 290

<F2>
Toggle Breakpoint 250

<F3>

Find Next 246
<F5>

Compile 248
<F7>

Trace into 250
<F8>

Step over 250
<F9>

Run ... 250
keywords 182, 189, 204

abort .. 189
align .. 189
always_on ... 190
anymem .. 190
asm ... 190
auto ... 191
bbram .. 191
break ... 192
c .. 192
case ... 192
char ... 193
cofunc ... 193
const ... 171
continue .. 195
costate ... 195
debug .. 195
default ... 196
do .. 196
else .. 196
enum ... 197
extern .. 197
far ... 197
firsttime .. 200
float ... 200
for ... 201
goto ... 201
if ... 201
init_on ... 202
int .. 202
interrupt .. 202
long ... 203
nodebug .. 203
norst .. 204
nouseix ... 204
NULL ... 204
protected ... 205
register .. 205
return .. 206
root ... 206
scofunc ... 206
segchain .. 207
shared ... 207
short .. 207
size .. 208
Index rabbit.com 345

http://www.rabbit.com

sizeof .. 208
speed ... 208
static ... 208
struct ... 209
switch ... 210
typedef .. 210
union ... 211
unsigned ... 211
useix ... 211
void ... 214
volatile .. 215
waitfor .. 212
waitfordone .. 212
while ... 213
xdata ... 213
xmem .. 214
xstring ... 215
yield .. 215

L

language elements 189
operators ... 225

lib.dir 26, 27, 31, 222
libraries .. 9, 26

linking .. 26
real-time programming 9
writing your own 28

Library Help lookup 32, 297
linking .. 9
list files ... 278
locating errors .. 247
long

keyword .. 203
lookup function 297
loops

delay with MS_TIMER 94
do .. 196
for ... 201
timing with MS_TIMER 93

M

macros .. 173, 217
main function 26, 203, 320
MAP File .. 79
MBR ... 161
memory

address space 129
DATAORG 322, 324
dump ... 253
dump at address 255
dump flash .. 255
dump to file .. 255
dynamic allocation 132
extended 10, 182, 214

management 190, 206
map ... 329
root 131, 174, 206, 322
root keyword .. 11

memory management unit 10, 129
menus

close all open 242
Compile .. 248
Edit ... 245
Help .. 297
Inspect .. 253, 292
Options ... 257
Run ... 250

message window 247, 290
MMU .. 10, 129
mode

debug (run) ... 247
edit .. 247
print preview 244

modules 28, 30, 31, 330
body .. 28, 30, 31
example .. 30
header 28, 29, 30, 197
key .. 28, 29

mouse ... 240
MS_TIMER 93, 327
multitasking

cooperative ... 33
preemptive .. 50

N

names
in assembly ... 174

Next error <CTRL-N> 247
nodebug 168, 203, 250, 254, 277, 320
non-blocking .. 135
norst .. 204
nouseix ... 204
NULL ... 204

O

offsets in assembly 180, 182
online help .. 32, 299
operators ... 225

arithmetic operators 226
decrement (--) 228
division (/) 227
increment (++) 228
indirection (*) 227
minus (-) 226
modulus (%) 228
multiplication (*) 227
plus (+) 226
pointers 227
Index rabbit.com 346

http://www.rabbit.com

post-decrement (--) 228
post-increment (++) 228
pre-decrement (--) 228
pre-increment (++) 228

assignment operators 229
add assign (+=) 229
AND assign (&=) 230
assign (=) 229
divide assign (/=) 229
modulo assign (%=) 229
multiply assign (*=) 229
OR assign (|=) 230
shift left (<<=) 229
shift right (>>=) 229
subtract assign (-=) 229
XOR assign (^=) 230

associativity 225, 226
binary .. 225
bitwise operators

address (&) 231
bitwise AND (&) 231
bitwise exclusive OR (^) 231
bitwise inclusive OR (|) 231
complement (~) 231
pointers 231
shift left (<<) 230
shift right (>>) 230

comma .. 239
conditional operators (? :) 237
equality operators 233

equal (==) 233
not equal (!=) 233

in assembly ... 171
logical operators 234

logical AND (&&) 234
logical NOT (!) 234
logical OR (| |) 234

operator precedence 239
postfix expressions 234

() parentheses 234
[] array indices 234
dot (.) 235
parentheses () 234
right arrow (->) 235

precedence .. 225
reference/dereference operators 236

address (&) 236
bitwise AND (&) 236
indirection (*) 236
multiplication (*) 236

relational operators 232
greater than (>) 232
greater than or equal (>=) 232
less than (<) 232

less than or equal (<=) 232
sizeof .. 238
unary ... 225

optimize size or speed 277
options

compiler .. 276
menu ... 257

origins ... 216

P

PageDown key 240
PageUp key .. 240
passing arguments 177, 183, 184
pasting text ... 245
periodic interrupt 42, 51, 92, 327
pointer checking 19
poll target ... 252
polling .. 250
positioning text 247
precompile .. 29, 222
preserving registers 184, 188
Previous error <CTRL-P> 247
primary register 175, 183, 184
print

choosing a printer 244
print file .. 244
print preview .. 244
printf ... 267
program

reset .. 252
Project Explorer 290
project files243, ??–318
promotion ... 226
protected

keyword .. 205
variables ... 9, 205

prototypes
checking ... 277
function ... 28
in module header 28

Q

quitting Dynamic C 244

R

Rabbit 4000 configuration 330
Rabbit restart

protected variables 205
RAM compile ... 324
RAM functions 188
reading max number of characters 142
real-time

programming .. 9
Index rabbit.com 347

http://www.rabbit.com

redoing changes 245
registers

saving and restoring 184
shadow .. 328
snapshots .. 295
window 290, 295

relocatable code 188
reset

program .. 252
resizing columns 294
ret ... 183, 185
reti .. 185
return 183, 206, 210
return address ... 177
RFU .. 334

command line 335
root memory

keyword .. 206
memory map 129
static variables 131
variable address 174

ROOT_SIZE_4K 326
RST 28H .. 250, 320
run

menu ... 250
mode ... 247, 250
no polling ... 250

S

saving a file .. 243
scofunc ... 206
search text .. 246
SEC_TIMER 93, 327
segchain .. 24, 207
segmented .. 79
segmented address 79
SEGSIZE .. 129
separate I&D space 171, 185, 255, 278
shadow registers 328
shared ... 207
shared variables 9, 205
short .. 207
single stepping

assembly window 179
library files ... 195
options .. 250
watches window 254

size ... 208, 277
sizeof .. 208
slave port .. 96
slice statements .. 50
soft breakpoints 250
source files ... 26
SP (stack pointer) ... 177, 183, 184, 188, 223

special symbols
in assembly ... 174

speed ... 208, 277
stack

enable tracing 283
enter function 320
frame 177, 183, 184, 188
frame reference point 183
frame reference pointer 180, 182, 204, 320
function returning struct 183
ISR .. 185
local variables 180, 191
nouseix ... 204
pointer (SP) 177, 183, 184, 188, 223
snapshots .. 295
trace window 272, 295
unbalanced .. 188
window ... 295

STACKSEG ... 129
state machine

example .. 34
static variables

keyword .. 208
root memory 131

status register .. 295
Stdio window 266, 290
STDIO_DEBUG_SERIAL 267
step over ... 250
stop program execution 250
storage class

auto ... 19
static ... 19

strings ... 213
struct keyword .. 209
structure

offset of element 174
return space 177, 183, 184
returned by function 183

support files .. 32
switch ... 196, 210

case ... 210
switching to edit mode 247
symbol information 329
symbolic constant 217

T

target information248, 285–??
text editing .. 245
text search ... 246
TICK_TIMER 93, 327
tiling windows .. 290
timing loop ... 93
toggle

breakpoint 250, 251
Index rabbit.com 348

http://www.rabbit.com

toolbar .. 288
trace into ... 250
type

casting .. 226
checking ... 277

typedef .. 210

U

unary operators 225
unbalanced stack 188
undoing changes 245
union .. 211
unpreserved registers 184, 188
unsigned ... 211
untitled files ... 243
USB .. 275
useix 180, 211, 320
User block .. 321
Utility Programs

File Compression/Decompression 332
Font/ Bitmap Converter 334
Rabbit Field Utility 334

V

variables
auto ... 191
global .. 19
static ... 208

vertical tiling .. 290
virtual watchdogs 95
void .. 214
volatile .. 215

W

waitfor .. 212
waitfordone .. 212
warning reports 278
watch expressions

add or delete 253
enable ... 283
watch menu option 292
watch window 254
window ... 290

watchdog timers 95
watchdogs, virtual 95
wfd ... 212
while ... 213
wildcard mask .. 27
windows

assembly 179, 293
cascaded ... 290
information 290, 295
message .. 290

register .. 290, 295
stack .. 290, 295
Stdio ... 266, 290
tiled horizontally 290
tiled vertically 290
watch 254, 290, 292

X

xdata ... 213
xmem .. 182, 214

asm blocks .. 176
definition .. 129
root functions in 202

XPC .. 129, 322
xstring ... 215

Y

yield .. 215

Z

µC/OS-II ... 53
compatibility with TCP/IP 67
restrictions .. 56
Index rabbit.com 349

http://www.rabbit.com

	Table of Contents
	1. Installing Dynamic C
	1.1 Requirements
	1.2 Assumptions

	2. Introduction to Dynamic C
	2.1 The Nature of Dynamic C
	2.1.1 Speed

	2.2 New Features from ANSI C
	2.3 Dynamic C Enhancements and Differences

	3. Quick Tutorial
	3.1 Run DEMO1.C
	3.1.1 Single Stepping
	3.1.2 Watch Expression
	3.1.3 Breakpoint
	3.1.4 Editing the Program

	3.2 Run DEMO2.C
	3.2.1 Watching Variables Dynamically

	3.3 Run DEMO3.C
	3.3.1 Cooperative Multitasking

	3.4 Summary of Features

	4. Language
	4.1 Storage Classes
	4.2 Pointers
	4.3 Far Pointers and Far Data
	4.3.1 The far Qualifier
	4.3.2 Basic Declarations
	4.3.3 Multi-Level Far Pointers
	4.3.4 Arrays and Structures
	4.3.5 Complex Declarations
	4.3.6 Sample Programs

	4.4 Pointers to Functions, Indirect Calls
	4.5 Function Chaining
	4.6 Global Initialization
	4.7 Libraries
	4.7.1 LIB.DIR

	4.8 Headers
	4.9 Modules
	4.9.1 The Parts of a Module
	4.9.2 Module Sample Code
	4.9.3 Important Notes

	4.10 Function Description Headers
	4.11 Support Files

	5. Multitasking with Dynamic C
	5.1 Cooperative Multitasking
	5.2 A Real-Time Problem
	5.2.1 Solving the Real-Time Problem with a State Machine

	5.3 Costatements
	5.3.1 Solving the Real-Time Problem with Costatements
	5.3.2 Costatement Syntax
	5.3.3 Control Statements

	5.4 Advanced Costatement Topics
	5.4.1 The CoData Structure
	5.4.2 CoData Fields
	5.4.3 Pointer to CoData Structure
	5.4.4 Functions for Use With Named Costatements
	5.4.5 Firsttime Functions
	5.4.6 Shared Global Variables

	5.5 Cofunctions
	5.5.1 Cofunction Syntax
	5.5.2 Calling Restrictions
	5.5.3 CoData Structure
	5.5.4 Firsttime Functions
	5.5.5 Types of Cofunctions
	5.5.6 Types of Cofunction Calls
	5.5.7 Special Code Blocks
	5.5.8 Solving the Real-Time Problem with Cofunctions

	5.6 Patterns of Cooperative Multitasking
	5.7 Timing Considerations
	5.7.1 waitfor Accuracy Limits

	5.8 Overview of Preemptive Multitasking
	5.9 Slice Statements
	5.9.1 Slice Syntax
	5.9.2 Usage
	5.9.3 Restrictions
	5.9.4 Slice Data Structure
	5.9.5 Slice Internals

	5.10 µC/OS-II
	5.10.1 Changes to µC/OS-II
	5.10.1.1 Ticks per Second
	5.10.1.2 Task Creation
	5.10.1.3 Restrictions

	5.10.2 Tasking Aware Interrupt Service Routines (TA-ISR)
	5.10.2.1 Interrupt Priority Levels
	5.10.2.2 Possible ISR Scenarios
	5.10.2.3 General Layout of a TA-ISR

	5.10.3 Library Reentrancy
	5.10.4 How to Get a µC/OS-II Application Running
	5.10.4.1 Default Configuration
	5.10.4.2 Custom Configuration
	5.10.4.3 Examples

	5.10.5 Compatibility with TCP/IP
	5.10.5.1 Stack Size
	5.10.5.2 Socket Locks

	5.10.6 Debugging Tips

	5.11 Summary

	6. Debugging with Dynamic C
	6.1 Debugging Features of Dynamic C
	6.2 Debugging Tools
	6.2.1 printf()
	6.2.2 ANSI Escape Sequences
	6.2.3 Software Breakpoints
	6.2.4 Hardware Breakpoints
	6.2.5 Single Stepping
	6.2.6 Watch Expressions
	6.2.7 Evaluate Expressions
	6.2.8 Memory Dump
	6.2.9 MAP File
	6.2.10 Symbolic Stack Trace
	6.2.11 Assert Macro
	6.2.12 Miscellaneous Debugging Tools

	6.3 Where to Look for Debugger Features
	6.3.1 Run and Inspect Menus
	6.3.2 Options Menu
	6.3.3 Window Menu

	6.4 Debug Strategies
	6.4.1 Good Programming Practices
	6.4.2 Finding the Bug
	6.4.2.1 Reproduce the Problem
	6.4.2.2 Minimize the Failure Scenario
	6.4.2.3 Other Things to Try

	6.5 Reference to Other Debugging Information

	7. The Virtual Driver
	7.1 Default Operation
	7.2 Calling _GLOBAL_INIT()
	7.3 Global Timer Variables
	7.3.1 Example: Timing Loop
	7.3.2 Example: Delay Loop

	7.4 Watchdog Timers
	7.4.1 Hardware Watchdog
	7.4.2 Virtual Watchdogs

	7.5 Preemptive Multitasking Drivers

	8. The Slave Port Driver
	8.1 Slave Port Driver Protocol
	8.1.1 Overview
	8.1.2 Registers on the Slave
	8.1.3 Polling and Interrupts
	8.1.4 Communication Channels

	8.2 Functions
	8.3 Examples
	8.3.1 Status Handler
	8.3.2 Serial Port Handler
	8.3.3 Byte Stream Handler

	9. Run-Time Errors
	9.1 Run-Time Error Handling
	9.1.1 Error Code Ranges
	9.1.2 Fatal Error Codes

	9.2 User-Defined Error Handler
	9.2.1 Replacing the Default Handler

	9.3 Run-Time Error Logging
	9.3.1 Error Log Buffer
	9.3.2 Initialization and Defaults
	9.3.3 Configuration Macros
	9.3.4 Error Logging Functions
	9.3.5 Examples of Error Log Use

	10. Memory Management
	10.1 Memory Map
	10.1.1 Memory Mapping Control

	10.2 Extended Memory Functions
	10.3 Code Placement in Memory
	10.4 Dynamic Memory Allocation

	11. Direct Memory Access
	11.1 DMA Registers and Global Resources
	11.2 API Functions
	11.3 DMA Interrupts
	11.4 DMA Transfer Information
	11.4.1 DMA Transfer Priority
	11.4.2 DMA Transfer Mode
	11.4.3 DMA Transfer Functions
	11.4.4 DMA Transfer Function Flags

	11.5 DMA with Ethernet

	12. FAT File System
	12.1 Overview of FAT Documentation
	12.2 Running Your First FAT Sample Program
	12.2.1 Bringing Up the File System
	12.2.2 Using the File System

	12.3 More Sample Programs
	12.3.1 Blocking Sample
	12.3.2 Non-Blocking Sample
	12.3.2.1 Costatement that Writes a File
	12.3.2.2 Costatement that Reads and Displays a File

	12.4 FAT Operations
	12.4.1 Format and Partition the Device
	12.4.1.1 Default Partitioning
	12.4.1.2 Creating Multiple Partitions
	12.4.1.3 Preserving Existing Partitions
	12.4.1.4 FAT and DLM Partitions

	12.4.2 File and Directory Operations
	12.4.2.1 Open and Close Operations
	12.4.2.2 Read and Write Operations
	12.4.2.3 Going to a Specified Position in a File
	12.4.2.4 Creating Files and Subdirectories
	12.4.2.5 Reading Directories
	12.4.2.6 Deleting Files and Directories

	12.5 More FAT Information
	12.5.1 Clusters and Sectors
	12.5.2 The Master Boot Record
	12.5.3 FAT Partitions
	12.5.3.1 BPB
	12.5.3.2 FAT
	12.5.3.3 Root Directory
	12.5.3.4 Data Area
	12.5.3.5 Creating Multiple FAT Partitions

	12.5.4 Directory and File Names
	12.5.5 µC/OS-II and FAT Compatibility
	12.5.6 SF1000 and FAT Compatibility
	12.5.7 Hot-Swapping an xD Card
	12.5.8 Hot-Swapping an SD Card
	12.5.9 Unsupported FAT Features
	12.5.10 References

	13. Using Assembly Language
	13.1 Mixing Assembly and C
	13.1.1 Embedded Assembly Syntax
	13.1.2 Embedded C Syntax
	13.1.3 Setting Breakpoints in Assembly
	13.1.4 Assembly and 32-bit Pointer Registers (PW, PX, PY, PZ)

	13.2 Assembler and Preprocessor
	13.2.1 Comments
	13.2.2 Defining Constants
	13.2.3 Multiline Macros
	13.2.4 Labels
	13.2.5 Special Symbols
	13.2.6 C Variables

	13.3 Stand-Alone Assembly Code
	13.3.1 Stand-Alone Assembly Code in Extended Memory
	13.3.2 Example of Stand-Alone Assembly Code
	13.3.3 The Stack Frame
	13.3.3.1 Stack Frame Diagram
	13.3.3.2 The Frame Reference Point

	13.3.4 Embedded Assembly Example
	13.3.5 The Disassembled Code Window
	13.3.6 Local Variable Access

	13.4 C Calling Assembly
	13.4.1 Passing Parameters
	13.4.2 Location of Return Results
	13.4.3 Returning a Structure

	13.5 Assembly Calling C
	13.6 Interrupt Routines in Assembly
	13.6.1 Steps Followed by an ISR
	13.6.2 Modifying Interrupt Vectors

	13.7 Common Problems

	14. Keywords
	abandon
	abort
	align
	always_on
	anymem
	asm
	auto
	bbram
	break
	c
	case
	char
	cofunc
	const
	continue
	costate
	debug
	default
	do
	else
	enum
	extern
	far
	firsttime
	float
	for
	goto
	if
	.init_on
	int
	interrupt
	__lcall__
	long
	main
	nodebug
	norst
	nouseix
	NULL
	protected
	register
	return
	root
	scofunc
	segchain
	shared
	short
	size
	sizeof
	speed
	static
	struct
	switch
	typedef
	union
	unsigned
	useix
	waitfor
	waitfordone (wfd)
	while
	xdata
	xmem
	void
	volatile
	xstring
	yield
	14.1 Compiler Directives
	#asm
	#class
	#debug #nodebug
	#define
	#endasm
	#error
	#fatal
	#funcchain
	#GLOBAL_INIT
	#if #elif #else #endif
	#ifdef
	#ifndef
	#include
	#interleave #nointerleave
	#makechain
	#memmap
	#pragma
	#precompile
	#undef
	#use
	#useix #nouseix
	#warns
	#warnt
	#ximport
	#zimport

	15. Operators
	15.1 Arithmetic Operators
	+
	–
	*
	/
	++
	––
	%

	15.2 Assignment Operators
	=
	+=
	-=
	*=
	/=
	%=
	<<=
	>>=
	&=
	^=
	|=

	15.3 Bitwise Operators
	<<
	>>
	&
	^
	|
	~

	15.4 Relational Operators
	<
	<=
	>
	>=

	15.5 Equality Operators
	==
	!=

	15.6 Logical Operators
	&&
	||
	!

	15.7 Postfix Expressions
	()
	[]
	. (dot)
	->

	15.8 Reference/Dereference Operators
	&
	*

	15.9 Conditional Operators
	? :

	15.10 Other Operators
	(type)
	sizeof
	,

	16. Graphical User Interface
	16.1 The GUI Environment
	16.1.1 Editing
	16.1.2 Menus
	16.1.3 Using Keyboard Shortcuts
	16.1.4 Editor Window Popup Menu

	16.2 File Menu
	16.3 Edit Menu
	16.4 Compile Menu
	16.5 Run Menu
	16.6 Inspect Menu
	16.7 Options Menu
	16.7.1 Environment Options
	16.7.1.1 Editor Tab
	16.7.1.2 Gutter & Margin Tab
	16.7.1.3 Display Tab
	16.7.1.4 Syntax Colors Tab
	16.7.1.5 Code Templates Tab
	16.7.1.6 Debug Windows Tab
	16.7.1.7 Print/Alerts Tab

	16.7.2 Project Options
	16.7.2.1 Communications Tab
	16.7.2.2 Compiler Tab
	16.7.2.3 Debugger Tab
	16.7.2.4 Defines Tab
	16.7.2.5 Targetless Tab
	16.7.2.6 Include Path Tab

	16.7.3 Toolbars

	16.8 Window Menu
	16.9 Help Menu

	17. Command Line Interface
	17.1 Default States
	17.2 User Input
	17.3 Saving Output to a File
	17.4 Command Line Switches
	17.4.1 Switches Without Parameters
	17.4.2 Switches Requiring a Parameter

	17.5 Examples
	17.6 Command Line RFU

	18. Project Files
	18.1 Project File Names
	18.1.3 Active Project

	18.2 Updating a Project File
	18.3 Menu Selections
	18.4 Command Line Usage

	19. Hints and Tips
	19.1 A User-Defined BIOS
	19.2 Efficiency
	19.2.1 Nodebug Keyword
	19.2.2 In-line I/O

	19.3 Run-time Storage of Data
	19.3.1 User Block
	19.3.2 WriteFlash2
	19.3.3 Battery-Backed RAM

	19.4 Root Memory Reduction Tips
	19.4.1 Increasing Root Code Space
	19.4.2 Increasing Root Data Space

	Appendix A. Macros and Global Variables
	Appendix B. Map File Generation
	Appendix C. Security Software & Utility Programs
	Software License Agreement
	Index

